The fractional dimensional theory in Lüroth expansion

Luming Shen; Kui Fang

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 3, page 795-807
  • ISSN: 0011-4642

Abstract

top
It is well known that every x ( 0 , 1 ] can be expanded to an infinite Lüroth series in the form of x = 1 d 1 ( x ) + + 1 d 1 ( x ) ( d 1 ( x ) - 1 ) d n - 1 ( x ) ( d n - 1 ( x ) - 1 ) d n ( x ) + , where d n ( x ) 2 for all n 1 . In this paper, sets of points with some restrictions on the digits in Lüroth series expansions are considered. Mainly, the Hausdorff dimensions of the Cantor sets F φ = { x ( 0 , 1 ] : d n ( x ) φ ( n ) , n 1 } are completely determined, where φ is an integer-valued function defined on , and φ ( n ) as n .

How to cite

top

Shen, Luming, and Fang, Kui. "The fractional dimensional theory in Lüroth expansion." Czechoslovak Mathematical Journal 61.3 (2011): 795-807. <http://eudml.org/doc/196558>.

@article{Shen2011,
abstract = {It is well known that every $x\in (0,1]$ can be expanded to an infinite Lüroth series in the form of \[x=\frac\{1\}\{d\_1(x)\}+\cdots +\frac\{1\}\{d\_1(x)(d\_1(x)-1)\cdots d\_\{n-1\}(x)(d\_\{n-1\}(x)-1)d\_n(x)\}+\cdots , \] where $d_n(x)\ge 2$ for all $n\ge 1$. In this paper, sets of points with some restrictions on the digits in Lüroth series expansions are considered. Mainly, the Hausdorff dimensions of the Cantor sets \[ F\_\{\phi \}=\lbrace x\in (0,1]\colon d\_n(x)\ge \phi (n), \ \forall n\ge 1\rbrace \] are completely determined, where $\phi $ is an integer-valued function defined on $\mathbb \{N\}$, and $\phi (n)\rightarrow \infty $ as $n\rightarrow \infty $.},
author = {Shen, Luming, Fang, Kui},
journal = {Czechoslovak Mathematical Journal},
keywords = {Lüroth series; Cantor set; Hausdorff dimension; Lüroth series; Cantor set; Hausdorff dimension},
language = {eng},
number = {3},
pages = {795-807},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The fractional dimensional theory in Lüroth expansion},
url = {http://eudml.org/doc/196558},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Shen, Luming
AU - Fang, Kui
TI - The fractional dimensional theory in Lüroth expansion
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 3
SP - 795
EP - 807
AB - It is well known that every $x\in (0,1]$ can be expanded to an infinite Lüroth series in the form of \[x=\frac{1}{d_1(x)}+\cdots +\frac{1}{d_1(x)(d_1(x)-1)\cdots d_{n-1}(x)(d_{n-1}(x)-1)d_n(x)}+\cdots , \] where $d_n(x)\ge 2$ for all $n\ge 1$. In this paper, sets of points with some restrictions on the digits in Lüroth series expansions are considered. Mainly, the Hausdorff dimensions of the Cantor sets \[ F_{\phi }=\lbrace x\in (0,1]\colon d_n(x)\ge \phi (n), \ \forall n\ge 1\rbrace \] are completely determined, where $\phi $ is an integer-valued function defined on $\mathbb {N}$, and $\phi (n)\rightarrow \infty $ as $n\rightarrow \infty $.
LA - eng
KW - Lüroth series; Cantor set; Hausdorff dimension; Lüroth series; Cantor set; Hausdorff dimension
UR - http://eudml.org/doc/196558
ER -

References

top
  1. Barreiraa, L., Iommi, G., 10.1016/j.jnt.2008.06.002, J. Number Theory. 129 (2009), 1479-1490. (2009) MR2521488DOI10.1016/j.jnt.2008.06.002
  2. Dajani, K., Kraaikamp, C., Ergodic Theory of Numbers, The Carus Mathematical Monographs, 29. Washington DC, Mathematical Association of America (2002). (2002) Zbl1033.11040MR1917322
  3. Dajani, K., Kraaikamp, C., 10.5802/jtnb.172, J. Théor. Nombres Bordx. 8 (1996), 331-346. (1996) Zbl0870.11039MR1438473DOI10.5802/jtnb.172
  4. Falconer, K. J., Fractal Geometry: Mathematical Foundations and Application, John Wiley & Sons (1990). (1990) MR1102677
  5. Falconer, K. J., Techniques in Fractal Geometry, John Wiley & Sons (1997). (1997) Zbl0869.28003MR1449135
  6. Fan, A. H., Liao, L. M., Ma, J. H., Wang, B. W., 10.1088/0951-7715/23/5/009, Nonlinearity. 23 (2010), 1185-1197. (2010) MR2630097DOI10.1088/0951-7715/23/5/009
  7. Galambos, J., Reprentations of Real Numbers by Infinite Series, Lecture Notes in Mathematics 502, Berlin-Heidelberg-New York, Springer-Verlag (1976). (1976) MR0568141
  8. Good, I. J., 10.1017/S030500410002171X, Proc. Camb. Philos. Soc. 37 (1941), 199-228. (1941) Zbl0061.09408MR0004878DOI10.1017/S030500410002171X
  9. Jager, H., Vroedt, C. De, Lüroth series and their ergodic properties, Nederl. Akad. Wet., Proc. Ser. A72 (1969), 31-42. (1969) Zbl0167.32201MR0238793
  10. L'uczak, T., 10.1112/S0025579300011955, Mathematika 44 (1997), 50-53. (1997) MR1464375DOI10.1112/S0025579300011955
  11. Lüroth, J., 10.1007/BF01443883, Math. Annalen. 21 (1883), 411-423. (1883) MR1510205DOI10.1007/BF01443883
  12. Šalát, T., Zur metrischen Theorie der Lürothschen Entwicklungen der reellen Zahlen, Czech. Math. J. 18 (1968), 489-522. (1968) MR0229605
  13. Schweiger, F., Ergodic Theory of Fibred Systems and Metric Number Theory, Oxford, Clarendon Press (1995). (1995) Zbl0819.11027MR1419320
  14. Shen, L. M., Wu, J., 10.1016/j.jmaa.2006.07.049, J. Math. Anal. Appl. 329 (2007), 1440-1445. (2007) Zbl1154.11331MR2296934DOI10.1016/j.jmaa.2006.07.049
  15. Wang, B. W., Wu, J., 10.1016/j.aim.2008.03.006, Adv. Math. 218 (2008), 1319-1339. (2008) MR2419924DOI10.1016/j.aim.2008.03.006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.