The fractional dimensional theory in Lüroth expansion
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 3, page 795-807
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topShen, Luming, and Fang, Kui. "The fractional dimensional theory in Lüroth expansion." Czechoslovak Mathematical Journal 61.3 (2011): 795-807. <http://eudml.org/doc/196558>.
@article{Shen2011,
abstract = {It is well known that every $x\in (0,1]$ can be expanded to an infinite Lüroth series in the form of \[x=\frac\{1\}\{d\_1(x)\}+\cdots +\frac\{1\}\{d\_1(x)(d\_1(x)-1)\cdots d\_\{n-1\}(x)(d\_\{n-1\}(x)-1)d\_n(x)\}+\cdots , \]
where $d_n(x)\ge 2$ for all $n\ge 1$. In this paper, sets of points with some restrictions on the digits in Lüroth series expansions are considered. Mainly, the Hausdorff dimensions of the Cantor sets \[ F\_\{\phi \}=\lbrace x\in (0,1]\colon d\_n(x)\ge \phi (n), \ \forall n\ge 1\rbrace \]
are completely determined, where $\phi $ is an integer-valued function defined on $\mathbb \{N\}$, and $\phi (n)\rightarrow \infty $ as $n\rightarrow \infty $.},
author = {Shen, Luming, Fang, Kui},
journal = {Czechoslovak Mathematical Journal},
keywords = {Lüroth series; Cantor set; Hausdorff dimension; Lüroth series; Cantor set; Hausdorff dimension},
language = {eng},
number = {3},
pages = {795-807},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The fractional dimensional theory in Lüroth expansion},
url = {http://eudml.org/doc/196558},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Shen, Luming
AU - Fang, Kui
TI - The fractional dimensional theory in Lüroth expansion
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 3
SP - 795
EP - 807
AB - It is well known that every $x\in (0,1]$ can be expanded to an infinite Lüroth series in the form of \[x=\frac{1}{d_1(x)}+\cdots +\frac{1}{d_1(x)(d_1(x)-1)\cdots d_{n-1}(x)(d_{n-1}(x)-1)d_n(x)}+\cdots , \]
where $d_n(x)\ge 2$ for all $n\ge 1$. In this paper, sets of points with some restrictions on the digits in Lüroth series expansions are considered. Mainly, the Hausdorff dimensions of the Cantor sets \[ F_{\phi }=\lbrace x\in (0,1]\colon d_n(x)\ge \phi (n), \ \forall n\ge 1\rbrace \]
are completely determined, where $\phi $ is an integer-valued function defined on $\mathbb {N}$, and $\phi (n)\rightarrow \infty $ as $n\rightarrow \infty $.
LA - eng
KW - Lüroth series; Cantor set; Hausdorff dimension; Lüroth series; Cantor set; Hausdorff dimension
UR - http://eudml.org/doc/196558
ER -
References
top- Barreiraa, L., Iommi, G., 10.1016/j.jnt.2008.06.002, J. Number Theory. 129 (2009), 1479-1490. (2009) MR2521488DOI10.1016/j.jnt.2008.06.002
- Dajani, K., Kraaikamp, C., Ergodic Theory of Numbers, The Carus Mathematical Monographs, 29. Washington DC, Mathematical Association of America (2002). (2002) Zbl1033.11040MR1917322
- Dajani, K., Kraaikamp, C., 10.5802/jtnb.172, J. Théor. Nombres Bordx. 8 (1996), 331-346. (1996) Zbl0870.11039MR1438473DOI10.5802/jtnb.172
- Falconer, K. J., Fractal Geometry: Mathematical Foundations and Application, John Wiley & Sons (1990). (1990) MR1102677
- Falconer, K. J., Techniques in Fractal Geometry, John Wiley & Sons (1997). (1997) Zbl0869.28003MR1449135
- Fan, A. H., Liao, L. M., Ma, J. H., Wang, B. W., 10.1088/0951-7715/23/5/009, Nonlinearity. 23 (2010), 1185-1197. (2010) MR2630097DOI10.1088/0951-7715/23/5/009
- Galambos, J., Reprentations of Real Numbers by Infinite Series, Lecture Notes in Mathematics 502, Berlin-Heidelberg-New York, Springer-Verlag (1976). (1976) MR0568141
- Good, I. J., 10.1017/S030500410002171X, Proc. Camb. Philos. Soc. 37 (1941), 199-228. (1941) Zbl0061.09408MR0004878DOI10.1017/S030500410002171X
- Jager, H., Vroedt, C. De, Lüroth series and their ergodic properties, Nederl. Akad. Wet., Proc. Ser. A72 (1969), 31-42. (1969) Zbl0167.32201MR0238793
- L'uczak, T., 10.1112/S0025579300011955, Mathematika 44 (1997), 50-53. (1997) MR1464375DOI10.1112/S0025579300011955
- Lüroth, J., 10.1007/BF01443883, Math. Annalen. 21 (1883), 411-423. (1883) MR1510205DOI10.1007/BF01443883
- Šalát, T., Zur metrischen Theorie der Lürothschen Entwicklungen der reellen Zahlen, Czech. Math. J. 18 (1968), 489-522. (1968) MR0229605
- Schweiger, F., Ergodic Theory of Fibred Systems and Metric Number Theory, Oxford, Clarendon Press (1995). (1995) Zbl0819.11027MR1419320
- Shen, L. M., Wu, J., 10.1016/j.jmaa.2006.07.049, J. Math. Anal. Appl. 329 (2007), 1440-1445. (2007) Zbl1154.11331MR2296934DOI10.1016/j.jmaa.2006.07.049
- Wang, B. W., Wu, J., 10.1016/j.aim.2008.03.006, Adv. Math. 218 (2008), 1319-1339. (2008) MR2419924DOI10.1016/j.aim.2008.03.006
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.