The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A concept of absolute continuity and a Riemann type integral”

A descriptive, additive modification of Mawhin's integral and the Divergence Theorem with singularities

Dirk Jens F. Nonnenmacher (1994)

Annales Polonici Mathematici

Similarity:

Modifying Mawhin's definition of the GP-integral we define a well-behaved integral over n-dimensional compact intervals. While its starting definition is of Riemann type, we also establish an equivalent descriptive definition involving characteristic null conditions. This characterization is then used to obtain a quite general form of the divergence theorem.

Each nowhere dense nonvoid closed set in Rn is a σ-limit set

Andrei Sivak (1996)

Fundamenta Mathematicae

Similarity:

We discuss main properties of the dynamics on minimal attraction centers (σ-limit sets) of single trajectories for continuous maps of a compact metric space into itself. We prove that each nowhere dense nonvoid closed set in n , n ≥ 1, is a σ-limit set for some continuous map.