Each nowhere dense nonvoid closed set in Rn is a σ-limit set

Andrei Sivak

Fundamenta Mathematicae (1996)

  • Volume: 149, Issue: 2, page 183-190
  • ISSN: 0016-2736

Abstract

top
We discuss main properties of the dynamics on minimal attraction centers (σ-limit sets) of single trajectories for continuous maps of a compact metric space into itself. We prove that each nowhere dense nonvoid closed set in n , n ≥ 1, is a σ-limit set for some continuous map.

How to cite

top

Sivak, Andrei. "Each nowhere dense nonvoid closed set in Rn is a σ-limit set." Fundamenta Mathematicae 149.2 (1996): 183-190. <http://eudml.org/doc/212116>.

@article{Sivak1996,
abstract = {We discuss main properties of the dynamics on minimal attraction centers (σ-limit sets) of single trajectories for continuous maps of a compact metric space into itself. We prove that each nowhere dense nonvoid closed set in $ℝ^n$, n ≥ 1, is a σ-limit set for some continuous map.},
author = {Sivak, Andrei},
journal = {Fundamenta Mathematicae},
keywords = {dynamical systems; iterations; continuous maps},
language = {eng},
number = {2},
pages = {183-190},
title = {Each nowhere dense nonvoid closed set in Rn is a σ-limit set},
url = {http://eudml.org/doc/212116},
volume = {149},
year = {1996},
}

TY - JOUR
AU - Sivak, Andrei
TI - Each nowhere dense nonvoid closed set in Rn is a σ-limit set
JO - Fundamenta Mathematicae
PY - 1996
VL - 149
IS - 2
SP - 183
EP - 190
AB - We discuss main properties of the dynamics on minimal attraction centers (σ-limit sets) of single trajectories for continuous maps of a compact metric space into itself. We prove that each nowhere dense nonvoid closed set in $ℝ^n$, n ≥ 1, is a σ-limit set for some continuous map.
LA - eng
KW - dynamical systems; iterations; continuous maps
UR - http://eudml.org/doc/212116
ER -

References

top
  1. [1] S. Agronsky, A. Bruckner, J. Ceder and T. Pearson, The structure of ω-limit sets for continuous functions, Real Anal. Exchange 15 (1989-90), 483-510. Zbl0728.26006
  2. [2] A. Bruckner and J. Smítal, The structure of ω-limit sets for continuous maps of the interval, Math. Bohem. 117 (1992), 42-47. Zbl0762.26003
  3. [3] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, Princeton, N.J., 1981. Zbl0459.28023
  4. [4] H. Hilmy, Sur les centres d'attraction minimaux dans les systèmes dynamiques, Compositio Math. 3 (1936), 227-238. Zbl62.0992.11
  5. [5] N. Kryloff et N. Bogoliouboff [N. Krylov et N. Bogolyubov], La théorie générale de la mesure dans son application à l'étude des systèmes de la mécanique non linéaire, Ann. of Math. (2) 38 (1937), 65-113. Zbl0016.08604
  6. [6] V. V. Nemytskiĭ and V. V. Stepanov, Qualitative Theory of Differential Equations, Princeton Univ. Press, Princeton, N.J., 1960. Zbl0089.29502
  7. [7] A. N. Sharkovskiĭ, Attracting and attracted sets, Dokl. Akad. Nauk SSSR 160 (1965), 1036-1038 (in Russian); English transl.: Soviet Math. Dokl. 6 (1965), 268-270. 
  8. [8] A. G. Sivak, The structure of minimal attraction centers of trajectories of continuous maps of the interval, Real Anal. Exchange 20 (1994/95), 125-133. Zbl0824.54021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.