Displaying similar documents to “On the exterior steady problem for the equations of a viscous isothermal gas”

Analysis of the flows of incompressible fluids with pressure dependent viscosity fulfilling ν ( p , · ) + as p +

M. Bulíček, Josef Málek, Kumbakonam R. Rajagopal (2009)

Czechoslovak Mathematical Journal

Similarity:

Over a large range of the pressure, one cannot ignore the fact that the viscosity grows significantly (even exponentially) with increasing pressure. This paper concerns long-time and large-data existence results for a generalization of the Navier-Stokes fluid whose viscosity depends on the shear rate and the pressure. The novelty of this result stems from the fact that we allow the viscosity to be an unbounded function of pressure as it becomes infinite. In order to include a large class...

Spectral element discretization of the vorticity, velocity and pressure formulation of the Stokes problem

Karima Amoura, Christine Bernardi, Nejmeddine Chorfi (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We consider the Stokes problem provided with non standard boundary conditions which involve the normal component of the velocity and the tangential components of the vorticity. We write a variational formulation of this problem with three independent unknowns: the vorticity, the velocity and the pressure. Next we propose a discretization by spectral element methods which relies on this formulation. A detailed numerical analysis leads to optimal error estimates for the three unknowns...

On the two-dimensional compressible isentropic Navier–Stokes equations

Catherine Giacomoni, Pierre Orenga (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We analyze the compressible isentropic Navier–Stokes equations (Lions, 1998) in the two-dimensional case with γ = c p / c v = 2 . These equations also modelize the shallow water problem in height-flow rate formulation used to solve the flow in lakes and perfectly well-mixed sea. We establish a convergence result for the time-discretized problem when the momentum equation and the continuity equation are solved with the Galerkin method, without adding a penalization term in the continuity equation as it...