Analysis of the flows of incompressible fluids with pressure dependent viscosity fulfilling ν ( p , · ) + as p +

M. Bulíček; Josef Málek; Kumbakonam R. Rajagopal

Czechoslovak Mathematical Journal (2009)

  • Volume: 59, Issue: 2, page 503-528
  • ISSN: 0011-4642

Abstract

top
Over a large range of the pressure, one cannot ignore the fact that the viscosity grows significantly (even exponentially) with increasing pressure. This paper concerns long-time and large-data existence results for a generalization of the Navier-Stokes fluid whose viscosity depends on the shear rate and the pressure. The novelty of this result stems from the fact that we allow the viscosity to be an unbounded function of pressure as it becomes infinite. In order to include a large class of viscosities and in order to explain the main idea in as simple a manner as possible, we restrict ourselves to a discussion of the spatially periodic problem.

How to cite

top

Bulíček, M., Málek, Josef, and Rajagopal, Kumbakonam R.. "Analysis of the flows of incompressible fluids with pressure dependent viscosity fulfilling $\nu (p, \cdot ) \rightarrow + \infty $ as $p \rightarrow +\infty $." Czechoslovak Mathematical Journal 59.2 (2009): 503-528. <http://eudml.org/doc/37937>.

@article{Bulíček2009,
abstract = {Over a large range of the pressure, one cannot ignore the fact that the viscosity grows significantly (even exponentially) with increasing pressure. This paper concerns long-time and large-data existence results for a generalization of the Navier-Stokes fluid whose viscosity depends on the shear rate and the pressure. The novelty of this result stems from the fact that we allow the viscosity to be an unbounded function of pressure as it becomes infinite. In order to include a large class of viscosities and in order to explain the main idea in as simple a manner as possible, we restrict ourselves to a discussion of the spatially periodic problem.},
author = {Bulíček, M., Málek, Josef, Rajagopal, Kumbakonam R.},
journal = {Czechoslovak Mathematical Journal},
keywords = {\{existence; weak solution; incompressible fluid; pressure-dependent viscosity; shear-dependent viscosity; spatially periodic problem\}; existence; weak solution; incompressible fluid; pressure-dependent viscosity; shear-dependent viscosity; spatially periodic problem},
language = {eng},
number = {2},
pages = {503-528},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Analysis of the flows of incompressible fluids with pressure dependent viscosity fulfilling $\nu (p, \cdot ) \rightarrow + \infty $ as $p \rightarrow +\infty $},
url = {http://eudml.org/doc/37937},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Bulíček, M.
AU - Málek, Josef
AU - Rajagopal, Kumbakonam R.
TI - Analysis of the flows of incompressible fluids with pressure dependent viscosity fulfilling $\nu (p, \cdot ) \rightarrow + \infty $ as $p \rightarrow +\infty $
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 2
SP - 503
EP - 528
AB - Over a large range of the pressure, one cannot ignore the fact that the viscosity grows significantly (even exponentially) with increasing pressure. This paper concerns long-time and large-data existence results for a generalization of the Navier-Stokes fluid whose viscosity depends on the shear rate and the pressure. The novelty of this result stems from the fact that we allow the viscosity to be an unbounded function of pressure as it becomes infinite. In order to include a large class of viscosities and in order to explain the main idea in as simple a manner as possible, we restrict ourselves to a discussion of the spatially periodic problem.
LA - eng
KW - {existence; weak solution; incompressible fluid; pressure-dependent viscosity; shear-dependent viscosity; spatially periodic problem}; existence; weak solution; incompressible fluid; pressure-dependent viscosity; shear-dependent viscosity; spatially periodic problem
UR - http://eudml.org/doc/37937
ER -

References

top
  1. Andrade, C., 10.1038/125309b0, Nature 125 309-310 (1930) 6.1264.10. DOI10.1038/125309b0
  2. Bair, S., 10.1080/05698190500414391, {Tribology transactions} 49 39-45 (2006). (2006) DOI10.1080/05698190500414391
  3. Bair, S., Kottke, P., 10.1080/10402000308982628, {Tribology transactions} 46 289-295 (2003). (2003) DOI10.1080/10402000308982628
  4. Barus, C., Isothermals, isopiestics and isometrics relative to viscosity, {American Jour. Sci.} 45 87-96, (1893). (1893) 
  5. Bridgman, P. W., {The Physics of High Pressure}, MacMillan, New York (1931). (1931) 
  6. Bulíček, M., Málek, J., Rajagopal, K.R., 10.1512/iumj.2007.56.2997, {Indiana Univ. Math. J.} 56 51-86 (2007). (2007) Zbl1129.35055MR2305930DOI10.1512/iumj.2007.56.2997
  7. Bulíček, M., Málek, J., Rajagopal, K. R., Mathematical analysis of unsteady flows of fluids with pressure, shear-rate and temperature dependent material moduli, that slip at solid boundaries, (to appear) in SIAM J. Math. Anal. MR2515781
  8. Franta, M., Málek, J., Rajagopal, K. R., 10.1098/rspa.2004.1360, {Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.} 461(2055) 651-670 (2005). (2005) MR2121929DOI10.1098/rspa.2004.1360
  9. Hron, J., Málek, J., Nečas, J., Rajagopal, K. R., 10.1016/S0378-4754(02)00085-X, {Math. Comput. Simulation} 61(3-6) 297-315 (2003). (2003) MR1984133DOI10.1016/S0378-4754(02)00085-X
  10. Leray, J., 10.1007/BF02547354, Acta Math. 63 193-248(1934)0.0726.05. MR1555394DOI10.1007/BF02547354
  11. Málek, J., Nečas, J., Rajagopal, K. R., 10.1007/s00205-002-0219-4, {Arch. Ration. Mech. Anal.} 165(3) 243-269 (2002). (2002) MR1941479DOI10.1007/s00205-002-0219-4
  12. Málek, J., Nečas, J., Rokyta, M., Růžička, M., {Weak and Measure-valued Solutions to Evolutionary PDEs}, Chapman & Hall, London (1996). (1996) MR1409366
  13. Málek, J., Rajagopal, K. R., Mathematical Properties of the Solutions to the Equations Govering the Flow of Fluid with Pressure and Shear Rate Dependent Viscosities, In {Handbook of Mathematical Fluid Dynamics, Vol. IV}, Handb. Differ. Equ 407-444 Elsevier/North-Holland, Amsterdam (2007). (2007) MR3929620
  14. Rajagopal, K. R., 10.1023/A:1026062615145, {Appl. Math.} 48(4) 279-319 (2003). (2003) Zbl1099.74009MR1994378DOI10.1023/A:1026062615145
  15. Rajagopal, K. R., 10.1017/S0022112005008025, {J. Fluid Mech.} 550 243-249 (2006). (2006) Zbl1097.76009MR2263984DOI10.1017/S0022112005008025
  16. Rajagopal, K. R., Srinivasa, A. R., 10.1098/rspa.2004.1385, {Proc. R. Soc. A} 461 2785-2795 (2005). (2005) Zbl1186.74008MR2165511DOI10.1098/rspa.2004.1385
  17. Schaeffer, D. G., 10.1016/0022-0396(87)90038-6, {J. Differential Equations} 66(1) 19-50 (1987). (1987) Zbl0647.35037MR0871569DOI10.1016/0022-0396(87)90038-6
  18. Schaeffer, D. G., 10.1016/0022-0396(87)90038-6, {J. Differential Equations} 66(1) 19-50 (1987). (1987) Zbl0647.35037MR0871569DOI10.1016/0022-0396(87)90038-6

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.