The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the metric dimension of converging sequences”

On character of points in the Higson corona of a metric space

Taras O. Banakh, Ostap Chervak, Lubomyr Zdomskyy (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove that for an unbounded metric space X , the minimal character 𝗆 χ ( X ˇ ) of a point of the Higson corona X ˇ of X is equal to 𝔲 if X has asymptotically isolated balls and to max { 𝔲 , 𝔡 } otherwise. This implies that under 𝔲 < 𝔡 a metric space X of bounded geometry is coarsely equivalent to the Cantor macro-cube 2 < if and only if dim ( X ˇ ) = 0 and 𝗆 χ ( X ˇ ) = 𝔡 . This contrasts with a result of Protasov saying that under CH the coronas of any two asymptotically zero-dimensional unbounded metric separable spaces are homeomorphic. ...