Displaying similar documents to “On asymptotic properties of solutions of third order linear differential equations with deviating arguments”

A note on the Cauchy problem for first order linear differential equations with a deviating argument

Robert Hakl, Alexander Lomtatidze (2002)

Archivum Mathematicum

Similarity:

Conditions for the existence and uniqueness of a solution of the Cauchy problem u ' ( t ) = p ( t ) u ( τ ( t ) ) + q ( t ) , u ( a ) = c , established in [2], are formulated more precisely and refined for the special case, where the function τ maps the interval ] a , b [ into some subinterval [ τ 0 , τ 1 ] [ a , b ] , which can be degenerated to a point.

On solutions of quasilinear wave equations with nonlinear damping terms

Jong Yeoul Park, Jeong Ja Bae (2000)

Czechoslovak Mathematical Journal

Similarity:

In this paper we consider the existence and asymptotic behavior of solutions of the following problem: u t t ( t , x ) - ( α + β u ( t , x ) 2 2 + β v ( t , x ) 2 2 ) Δ u ( t , x ) + δ | u t ( t , x ) | p - 1 u t ( t , x ) = μ | u ( t , x ) | q - 1 u ( t , x ) , x Ω , t 0 , v t t ( t , x ) - ( α + β u ( t , x ) 2 2 + β v ( t , x ) 2 2 ) Δ v ( t , x ) + δ | v t ( t , x ) | p - 1 v t ( t , x ) = μ | v ( t , x ) | q - 1 v ( t , x ) , x Ω , t 0 , u ( 0 , x ) = u 0 ( x ) , u t ( 0 , x ) = u 1 ( x ) , x Ω , v ( 0 , x ) = v 0 ( x ) , v t ( 0 , x ) = v 1 ( x ) , x Ω , u | Ω = v | Ω = 0 where q > 1 , p 1 , δ > 0 , α > 0 , β 0 , μ and Δ is the Laplacian in N .