Displaying similar documents to “A remark on the tightness of products”

On embeddings into C p ( X ) where X is Lindelöf

Masami Sakai (1992)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A.V. Arkhangel’skii asked that, is it true that every space Y of countable tightness is homeomorphic to a subspace (to a closed subspace) of C p ( X ) where X is Lindelöf? C p ( X ) denotes the space of all continuous real-valued functions on a space X with the topology of pointwise convergence. In this note we show that the two arrows space is a counterexample for the problem by showing that every separable compact linearly ordered topological space is second countable if it is homeomorphic to a subspace...

Functional separability

Ronnie Levy, M. Matveev (2010)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A space X is functionally countable (FC) if for every continuous f : X , | f ( X ) | ω . The class of FC spaces includes ordinals, some trees, compact scattered spaces, Lindelöf P-spaces, σ -products in 2 κ , and some L-spaces. We consider the following three versions of functional separability: X is 1-FS if it has a dense FC subspace; X is 2-FS if there is a dense subspace Y X such that for every continuous f : X , | f ( Y ) | ω ; X is 3-FS if for every continuous f : X , there is a dense subspace Y X such that | f ( Y ) | ω . We give examples...

Convergence in compacta and linear Lindelöfness

Aleksander V. Arhangel'skii, Raushan Z. Buzyakova (1998)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let X be a compact Hausdorff space with a point x such that X { x } is linearly Lindelöf. Is then X first countable at x ? What if this is true for every x in X ? We consider these and some related questions, and obtain partial answers; in particular, we prove that the answer to the second question is “yes” when X is, in addition, ω -monolithic. We also prove that if X is compact, Hausdorff, and X { x } is strongly discretely Lindelöf, for every x in X , then X is first countable. An example of linearly...

In search for Lindelöf C p ’s

Raushan Z. Buzyakova (2004)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

It is shown that if X is a first-countable countably compact subspace of ordinals then C p ( X ) is Lindelöf. This result is used to construct an example of a countably compact space X such that the extent of C p ( X ) is less than the Lindelöf number of C p ( X ) . This example answers negatively Reznichenko’s question whether Baturov’s theorem holds for countably compact spaces.