Functional separability

Ronnie Levy; M. Matveev

Commentationes Mathematicae Universitatis Carolinae (2010)

  • Volume: 51, Issue: 4, page 705-711
  • ISSN: 0010-2628

Abstract

top
A space X is functionally countable (FC) if for every continuous f : X , | f ( X ) | ω . The class of FC spaces includes ordinals, some trees, compact scattered spaces, Lindelöf P-spaces, σ -products in 2 κ , and some L-spaces. We consider the following three versions of functional separability: X is 1-FS if it has a dense FC subspace; X is 2-FS if there is a dense subspace Y X such that for every continuous f : X , | f ( Y ) | ω ; X is 3-FS if for every continuous f : X , there is a dense subspace Y X such that | f ( Y ) | ω . We give examples distinguishing 1-FS, 2-FS, and 3-FS and discuss some properties of functionally separable spaces.

How to cite

top

Levy, Ronnie, and Matveev, M.. "Functional separability." Commentationes Mathematicae Universitatis Carolinae 51.4 (2010): 705-711. <http://eudml.org/doc/246508>.

@article{Levy2010,
abstract = {A space $X$ is functionally countable (FC) if for every continuous $f:X\rightarrow \mathbb \{R\}$, $|f(X)|\le \omega $. The class of FC spaces includes ordinals, some trees, compact scattered spaces, Lindelöf P-spaces, $\sigma $-products in $2^\kappa $, and some L-spaces. We consider the following three versions of functional separability: $X$ is 1-FS if it has a dense FC subspace; $X$ is 2-FS if there is a dense subspace $Y\subset X$ such that for every continuous $f:X\rightarrow \mathbb \{R\}$, $|f(Y)|\le \omega $; $X$ is 3-FS if for every continuous $f:X\rightarrow \mathbb \{R\}$, there is a dense subspace $Y\subset X$ such that $|f(Y)|\le \omega $. We give examples distinguishing 1-FS, 2-FS, and 3-FS and discuss some properties of functionally separable spaces.},
author = {Levy, Ronnie, Matveev, M.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {functionally countable; pseudo-$\aleph _1$-compact; DCCC; P-space; $\tau $-simple; scattered; 1-functionally separable; 2-functionally separable; 3-functionally separable; pseudocompact; dyadic compactum; $\sigma $-centered base; LOTS; functionally countable space; functionally separable space; pseudocompact space},
language = {eng},
number = {4},
pages = {705-711},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Functional separability},
url = {http://eudml.org/doc/246508},
volume = {51},
year = {2010},
}

TY - JOUR
AU - Levy, Ronnie
AU - Matveev, M.
TI - Functional separability
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 4
SP - 705
EP - 711
AB - A space $X$ is functionally countable (FC) if for every continuous $f:X\rightarrow \mathbb {R}$, $|f(X)|\le \omega $. The class of FC spaces includes ordinals, some trees, compact scattered spaces, Lindelöf P-spaces, $\sigma $-products in $2^\kappa $, and some L-spaces. We consider the following three versions of functional separability: $X$ is 1-FS if it has a dense FC subspace; $X$ is 2-FS if there is a dense subspace $Y\subset X$ such that for every continuous $f:X\rightarrow \mathbb {R}$, $|f(Y)|\le \omega $; $X$ is 3-FS if for every continuous $f:X\rightarrow \mathbb {R}$, there is a dense subspace $Y\subset X$ such that $|f(Y)|\le \omega $. We give examples distinguishing 1-FS, 2-FS, and 3-FS and discuss some properties of functionally separable spaces.
LA - eng
KW - functionally countable; pseudo-$\aleph _1$-compact; DCCC; P-space; $\tau $-simple; scattered; 1-functionally separable; 2-functionally separable; 3-functionally separable; pseudocompact; dyadic compactum; $\sigma $-centered base; LOTS; functionally countable space; functionally separable space; pseudocompact space
UR - http://eudml.org/doc/246508
ER -

References

top
  1. Arhangel'skii A.V., Topological properties of function spaces: duality theorems, Soviet Math. Doc. 269 (1982), 1289–1292. MR0705371
  2. Arhangel'skii A.V., Topological Function Spaces, Kluwer Academic Publishers, 1992. MR1485266
  3. Barr M., Kennison F., Raphael R., 10.4153/CJM-2007-020-9, Canad. J. Math. 59 (2007), 465–487. MR2319155DOI10.4153/CJM-2007-020-9
  4. Barr M., Burgess W.D., Raphael R., Ring epimorphisms and C ( X ) , Theory Appl. Categ. 11 (2003), no. 12, 283–308. Zbl1042.54007MR1988400
  5. Burgess W.D., Raphael R., Compactifications, C ( X ) and ring epimorphisms, Theory Appl. Categ. 16 (2006), no. 21, 558–584. Zbl1115.18001MR2259263
  6. van Douwen E.K., Density of compactifications, Set-theoretic Topology, Academic Press, New York, 1977, pp. 97-110. Zbl0379.54006MR0442887
  7. Galvin F., Problem 6444, Amer. Math. Monthly 90 (1983), no. 9, 648; solution: Amer. Math. Monthly 92 (1985), no. 6, 434. 
  8. Hrušák M., Raphael R., Woods R.G., On a class of pseudocompact spaces derived from ring epimorphisms, Topology Appl. 153 (2005), 541–556. MR2193326
  9. Levy R., Rice M.D., Normal P spaces and the G δ -topology, Colloq. Math. 44 (1981), 227–240. Zbl0496.54034MR0652582
  10. Matveev M., 10.1016/j.topol.2010.02.013, Topology Appl. 157 (2010), 1211–1214. Zbl1190.54003MR2607088DOI10.1016/j.topol.2010.02.013
  11. Moore J.T., 10.1090/S0894-0347-05-00517-5, J. Amer. Math. Soc. 19 (2006), no. 3, 717–736. Zbl1107.03056MR2220104DOI10.1090/S0894-0347-05-00517-5
  12. Moore J.T., 10.1016/j.topol.2007.07.006, Topology Appl. 155 (2008), 304–307. Zbl1146.54015MR2380267DOI10.1016/j.topol.2007.07.006
  13. Noble N., Ulmer M., 10.1090/S0002-9947-1972-0288721-2, Trans. Amer. Math. Soc. 163 (1972), 329–339. MR0288721DOI10.1090/S0002-9947-1972-0288721-2
  14. Pełczyński A., Semadeni Z., Spaces of continuous functions III. Spaces C ( Ω ) for Ω without perfect subsets, Studia Math. 18 (1959), 211–222. MR0107806
  15. Raphael M., Woods R.G., The epimorphic hull of C ( X ) , Topology Appl. 105 (2002), 65–88. Zbl1069.18001MR1761087
  16. Reznichenko E.A., A pseudocompact space in which only sets of complete cardinality are not closed and not discrete, Moscow Univ. Math. Bull. (1989), no. 6, 69–70. MR1065983
  17. Rudin W., 10.1090/S0002-9939-1957-0085475-7, Proc. Amer. Math. Soc. 8 (1957), 39–42. Zbl0077.31103MR0085475DOI10.1090/S0002-9939-1957-0085475-7
  18. Steprans J., 10.1016/0166-8641(81)90019-5, Topology Appl. 12 (1981), no. 2, 181–185. Zbl0457.54010MR0612014DOI10.1016/0166-8641(81)90019-5

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.