Functional separability
Commentationes Mathematicae Universitatis Carolinae (2010)
- Volume: 51, Issue: 4, page 705-711
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topLevy, Ronnie, and Matveev, M.. "Functional separability." Commentationes Mathematicae Universitatis Carolinae 51.4 (2010): 705-711. <http://eudml.org/doc/246508>.
@article{Levy2010,
abstract = {A space $X$ is functionally countable (FC) if for every continuous $f:X\rightarrow \mathbb \{R\}$, $|f(X)|\le \omega $. The class of FC spaces includes ordinals, some trees, compact scattered spaces, Lindelöf P-spaces, $\sigma $-products in $2^\kappa $, and some L-spaces. We consider the following three versions of functional separability: $X$ is 1-FS if it has a dense FC subspace; $X$ is 2-FS if there is a dense subspace $Y\subset X$ such that for every continuous $f:X\rightarrow \mathbb \{R\}$, $|f(Y)|\le \omega $; $X$ is 3-FS if for every continuous $f:X\rightarrow \mathbb \{R\}$, there is a dense subspace $Y\subset X$ such that $|f(Y)|\le \omega $. We give examples distinguishing 1-FS, 2-FS, and 3-FS and discuss some properties of functionally separable spaces.},
author = {Levy, Ronnie, Matveev, M.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {functionally countable; pseudo-$\aleph _1$-compact; DCCC; P-space; $\tau $-simple; scattered; 1-functionally separable; 2-functionally separable; 3-functionally separable; pseudocompact; dyadic compactum; $\sigma $-centered base; LOTS; functionally countable space; functionally separable space; pseudocompact space},
language = {eng},
number = {4},
pages = {705-711},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Functional separability},
url = {http://eudml.org/doc/246508},
volume = {51},
year = {2010},
}
TY - JOUR
AU - Levy, Ronnie
AU - Matveev, M.
TI - Functional separability
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 4
SP - 705
EP - 711
AB - A space $X$ is functionally countable (FC) if for every continuous $f:X\rightarrow \mathbb {R}$, $|f(X)|\le \omega $. The class of FC spaces includes ordinals, some trees, compact scattered spaces, Lindelöf P-spaces, $\sigma $-products in $2^\kappa $, and some L-spaces. We consider the following three versions of functional separability: $X$ is 1-FS if it has a dense FC subspace; $X$ is 2-FS if there is a dense subspace $Y\subset X$ such that for every continuous $f:X\rightarrow \mathbb {R}$, $|f(Y)|\le \omega $; $X$ is 3-FS if for every continuous $f:X\rightarrow \mathbb {R}$, there is a dense subspace $Y\subset X$ such that $|f(Y)|\le \omega $. We give examples distinguishing 1-FS, 2-FS, and 3-FS and discuss some properties of functionally separable spaces.
LA - eng
KW - functionally countable; pseudo-$\aleph _1$-compact; DCCC; P-space; $\tau $-simple; scattered; 1-functionally separable; 2-functionally separable; 3-functionally separable; pseudocompact; dyadic compactum; $\sigma $-centered base; LOTS; functionally countable space; functionally separable space; pseudocompact space
UR - http://eudml.org/doc/246508
ER -
References
top- Arhangel'skii A.V., Topological properties of function spaces: duality theorems, Soviet Math. Doc. 269 (1982), 1289–1292. MR0705371
- Arhangel'skii A.V., Topological Function Spaces, Kluwer Academic Publishers, 1992. MR1485266
- Barr M., Kennison F., Raphael R., 10.4153/CJM-2007-020-9, Canad. J. Math. 59 (2007), 465–487. MR2319155DOI10.4153/CJM-2007-020-9
- Barr M., Burgess W.D., Raphael R., Ring epimorphisms and , Theory Appl. Categ. 11 (2003), no. 12, 283–308. Zbl1042.54007MR1988400
- Burgess W.D., Raphael R., Compactifications, and ring epimorphisms, Theory Appl. Categ. 16 (2006), no. 21, 558–584. Zbl1115.18001MR2259263
- van Douwen E.K., Density of compactifications, Set-theoretic Topology, Academic Press, New York, 1977, pp. 97-110. Zbl0379.54006MR0442887
- Galvin F., Problem 6444, Amer. Math. Monthly 90 (1983), no. 9, 648; solution: Amer. Math. Monthly 92 (1985), no. 6, 434.
- Hrušák M., Raphael R., Woods R.G., On a class of pseudocompact spaces derived from ring epimorphisms, Topology Appl. 153 (2005), 541–556. MR2193326
- Levy R., Rice M.D., Normal spaces and the -topology, Colloq. Math. 44 (1981), 227–240. Zbl0496.54034MR0652582
- Matveev M., 10.1016/j.topol.2010.02.013, Topology Appl. 157 (2010), 1211–1214. Zbl1190.54003MR2607088DOI10.1016/j.topol.2010.02.013
- Moore J.T., 10.1090/S0894-0347-05-00517-5, J. Amer. Math. Soc. 19 (2006), no. 3, 717–736. Zbl1107.03056MR2220104DOI10.1090/S0894-0347-05-00517-5
- Moore J.T., 10.1016/j.topol.2007.07.006, Topology Appl. 155 (2008), 304–307. Zbl1146.54015MR2380267DOI10.1016/j.topol.2007.07.006
- Noble N., Ulmer M., 10.1090/S0002-9947-1972-0288721-2, Trans. Amer. Math. Soc. 163 (1972), 329–339. MR0288721DOI10.1090/S0002-9947-1972-0288721-2
- Pełczyński A., Semadeni Z., Spaces of continuous functions III. Spaces for without perfect subsets, Studia Math. 18 (1959), 211–222. MR0107806
- Raphael M., Woods R.G., The epimorphic hull of , Topology Appl. 105 (2002), 65–88. Zbl1069.18001MR1761087
- Reznichenko E.A., A pseudocompact space in which only sets of complete cardinality are not closed and not discrete, Moscow Univ. Math. Bull. (1989), no. 6, 69–70. MR1065983
- Rudin W., 10.1090/S0002-9939-1957-0085475-7, Proc. Amer. Math. Soc. 8 (1957), 39–42. Zbl0077.31103MR0085475DOI10.1090/S0002-9939-1957-0085475-7
- Steprans J., 10.1016/0166-8641(81)90019-5, Topology Appl. 12 (1981), no. 2, 181–185. Zbl0457.54010MR0612014DOI10.1016/0166-8641(81)90019-5
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.