Displaying similar documents to “Some classes of linear n th-order differential equations”

Classification of nonoscillatory solutions of higher order neutral type difference equations

Ethiraju Thandapani, P. Sundaram, John R. Graef, A. Miciano, Paul W. Spikes (1995)

Archivum Mathematicum

Similarity:

The authors consider the difference equation Δ m [ y n - p n y n - k ] + δ q n y σ ( n + m - 1 ) = 0 ( * ) where m 2 , δ = ± 1 , k N 0 = { 0 , 1 , 2 , } , Δ y n = y n + 1 - y n , q n > 0 , and { σ ( n ) } is a sequence of integers with σ ( n ) n and lim n σ ( n ) = . They obtain results on the classification of the set of nonoscillatory solutions of ( * ) and use a fixed point method to show the existence of solutions having certain types of asymptotic behavior. Examples illustrating the results are included.

Existence of one-signed solutions of nonlinear four-point boundary value problems

Ruyun Ma, Ruipeng Chen (2012)

Czechoslovak Mathematical Journal

Similarity:

In this paper, we are concerned with the existence of one-signed solutions of four-point boundary value problems - u ' ' + M u = r g ( t ) f ( u ) , u ( 0 ) = u ( ε ) , u ( 1 ) = u ( 1 - ε ) and u ' ' + M u = r g ( t ) f ( u ) , u ( 0 ) = u ( ε ) , u ( 1 ) = u ( 1 - ε ) , where ε ( 0 , 1 / 2 ) , M ( 0 , ) is a constant and r > 0 is a parameter, g C ( [ 0 , 1 ] , ( 0 , + ) ) , f C ( , ) with s f ( s ) > 0 for s 0 . The proof of the main results is based upon bifurcation techniques.