Displaying similar documents to “On solutions of differential equations with ``common zero'' at infinity”

Periodic boundary value problem of a fourth order differential inclusion

Marko Švec (1997)

Archivum Mathematicum

Similarity:

The paper deals with the periodic boundary value problem (1) L 4 x ( t ) + a ( t ) x ( t ) F ( t , x ( t ) ) , t J = [ a , b ] , (2) L i x ( a ) = L i x ( b ) , i = 0 , 1 , 2 , 3 , where L 0 x ( t ) = a 0 x ( t ) , L i x ( t ) = a i ( t ) L i - 1 x ( t ) , i = 1 , 2 , 3 , 4 , a 0 ( t ) = a 4 ( t ) = 1 , a i ( t ) , i = 1 , 2 , 3 and a ( t ) are continuous on J , a ( t ) 0 , a i ( t ) > 0 , i = 1 , 2 , a 1 ( t ) = a 3 ( t ) · F ( t , x ) : J × R {nonempty convex compact subsets of R }, R = ( - , ) . The existence of such periodic solution is proven via Ky Fan’s fixed point theorem.

Generalized trigonometric functions in complex domain

Petr Girg, Lukáš Kotrla (2015)

Mathematica Bohemica

Similarity:

We study extension of p -trigonometric functions sin p and cos p to complex domain. For p = 4 , 6 , 8 , , the function sin p satisfies the initial value problem which is equivalent to (*) - ( u ' ) p - 2 u ' ' - u p - 1 = 0 , u ( 0 ) = 0 , u ' ( 0 ) = 1 in . In our recent paper, Girg, Kotrla (2014), we showed that sin p ( x ) is a real analytic function for p = 4 , 6 , 8 , on ( - π p / 2 , π p / 2 ) , where π p / 2 = 0 1 ( 1 - s p ) - 1 / p . This allows us to extend sin p to complex domain by its Maclaurin series convergent on the disc { z : | z | < π p / 2 } . The question is whether this extensions sin p ( z ) satisfies (*) in the sense of differential equations in complex domain. This...

Less than one implies zero

Felix L. Schwenninger, Hans Zwart (2015)

Studia Mathematica

Similarity:

In this paper we show that from an estimate of the form s u p t 0 | | C ( t ) - c o s ( a t ) I | | < 1 , we can conclude that C(t) equals cos(at)I. Here ( C ( t ) ) t 0 is a strongly continuous cosine family on a Banach space.

Weighted integrability of double cosine series with nonnegative coefficients

Chang-Pao Chen, Ming-Chuan Chen (2003)

Studia Mathematica

Similarity:

Let f c ( x , y ) j = 1 k = 1 a j k ( 1 - c o s j x ) ( 1 - c o s k y ) with a j k 0 for all j,k ≥ 1. We estimate the integral 0 π 0 π x α - 1 y β - 1 ϕ ( f c ( x , y ) ) d x d y in terms of the coefficients a j k , where α, β ∈ ℝ and ϕ: [0,∞] → [0,∞]. Our results can be regarded as the trigonometric analogues of those of Mazhar and Móricz [MM]. They generalize and extend Boas [B, Theorem 6.7].