Displaying similar documents to “On the domain of influence in thermoelasticity of bodies with voids”

On quadratically integrable solutions of the second order linear equation

T. Chantladze, Nodar Kandelaki, Alexander Lomtatidze (2001)

Archivum Mathematicum

Similarity:

Integral criteria are established for dim V i ( p ) = 0 and dim V i ( p ) = 1 , i { 0 , 1 } , where V i ( p ) is the space of solutions u of the equation u ' ' + p ( t ) u = 0 satisfying the condition + u 2 ( s ) s i d s < + .

On solutions of quasilinear wave equations with nonlinear damping terms

Jong Yeoul Park, Jeong Ja Bae (2000)

Czechoslovak Mathematical Journal

Similarity:

In this paper we consider the existence and asymptotic behavior of solutions of the following problem: u t t ( t , x ) - ( α + β u ( t , x ) 2 2 + β v ( t , x ) 2 2 ) Δ u ( t , x ) + δ | u t ( t , x ) | p - 1 u t ( t , x ) = μ | u ( t , x ) | q - 1 u ( t , x ) , x Ω , t 0 , v t t ( t , x ) - ( α + β u ( t , x ) 2 2 + β v ( t , x ) 2 2 ) Δ v ( t , x ) + δ | v t ( t , x ) | p - 1 v t ( t , x ) = μ | v ( t , x ) | q - 1 v ( t , x ) , x Ω , t 0 , u ( 0 , x ) = u 0 ( x ) , u t ( 0 , x ) = u 1 ( x ) , x Ω , v ( 0 , x ) = v 0 ( x ) , v t ( 0 , x ) = v 1 ( x ) , x Ω , u | Ω = v | Ω = 0 where q > 1 , p 1 , δ > 0 , α > 0 , β 0 , μ and Δ is the Laplacian in N .

On asymptotic properties of solutions of third order linear differential equations with deviating arguments

Ivan Kiguradze (1994)

Archivum Mathematicum

Similarity:

The asymptotic properties of solutions of the equation u ' ' ' ( t ) = p 1 ( t ) u ( τ 1 ( t ) ) + p 2 ( t ) u ' ( τ 2 ( t ) ) , are investigated where p i : [ a , + [ R ( i = 1 , 2 ) are locally summable functions, τ i : [ a , + [ R ( i = 1 , 2 ) measurable ones and τ i ( t ) t ( i = 1 , 2 ) . In particular, it is proved that if p 1 ( t ) 0 , p 2 2 ( t ) α ( t ) | p 1 ( t ) | , a + [ τ 1 ( t ) - t ] 2 p 1 ( t ) d t < + and a + α ( t ) d t < + , then each solution with the first derivative vanishing at infinity is of the Kneser type and a set of all such solutions forms a one-dimensional linear space.