Displaying similar documents to “A new finite element approach for problems containing small geometric details”

Numerical study of two sparse AMG-methods

Janne Martikainen (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

A sparse algebraic multigrid method is studied as a cheap and accurate way to compute approximations of Schur complements of matrices arising from the discretization of some symmetric and positive definite partial differential operators. The construction of such a multigrid is discussed and numerical experiments are used to verify the properties of the method.

Some fast finite-difference solvers for Dirichlet problems on general domains

Ta Van Dinh (1982)

Aplikace matematiky

Similarity:

The author proves the existence of the multi-parameter asymptotic error expansion to the five-point difference scheme for Dirichlet problems for the linear and semilinear elliptic PDE on general domains. By Richardson extrapolation, this expansion leads to a simple process for accelerating the convergence of the method.

Multiscale finite element coarse spaces for the application to linear elasticity

Marco Buck, Oleg Iliev, Heiko Andrä (2013)

Open Mathematics

Similarity:

We extend the multiscale finite element method (MsFEM) as formulated by Hou and Wu in [Hou T.Y., Wu X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 1997, 134(1), 169–189] to the PDE system of linear elasticity. The application, motivated by the multiscale analysis of highly heterogeneous composite materials, is twofold. Resolving the heterogeneities on the finest scale, we utilize the linear MsFEM basis for the...