Displaying similar documents to “Uniformly μ -continuous topologies on Köthe-Bochner spaces and Orlicz-Bochner spaces”

Topological dual of non-locally convex Orlicz-Bochner spaces

Marian Nowak (1999)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let L ϕ ( X ) be an Orlicz-Bochner space defined by an Orlicz function ϕ taking only finite values (not necessarily convex) over a σ -finite atomless measure space. It is proved that the topological dual L ϕ ( X ) * of L ϕ ( X ) can be represented in the form: L ϕ ( X ) * = L ϕ ( X ) n L ϕ ( X ) s , where L ϕ ( X ) n and L ϕ ( X ) s denote the order continuous dual and the singular dual of L ϕ ( X ) respectively. The spaces L ϕ ( X ) * , L ϕ ( X ) n and L ϕ ( X ) s are examined by means of the H. Nakano’s theory of conjugate modulars. (Studia Mathematica 31 (1968), 439–449). The well known results of the...

Inductive limit topologies on Orlicz spaces

Marian Nowak (1991)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let L ϕ be an Orlicz space defined by a convex Orlicz function ϕ and let E ϕ be the space of finite elements in L ϕ (= the ideal of all elements of order continuous norm). We show that the usual norm topology 𝒯 ϕ on L ϕ restricted to E ϕ can be obtained as an inductive limit topology with respect to some family of other Orlicz spaces. As an application we obtain a characterization of continuity of linear operators defined on E ϕ .