The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The existence of initially ω 1 -compact group topologies on free Abelian groups is independent of ZFC”

A group topology on the free abelian group of cardinality 𝔠 that makes its square countably compact

Ana Carolina Boero, Artur Hideyuki Tomita (2011)

Fundamenta Mathematicae

Similarity:

Under 𝔭 = 𝔠, we prove that it is possible to endow the free abelian group of cardinality 𝔠 with a group topology that makes its square countably compact. This answers a question posed by Madariaga-Garcia and Tomita and by Tkachenko. We also prove that there exists a Wallace semigroup (i.e., a countably compact both-sided cancellative topological semigroup which is not a topological group) whose square is countably compact. This answers a question posed by Grant.

Subsequence sums of zero-sum free sequences over finite abelian groups

Yongke Qu, Xingwu Xia, Lin Xue, Qinghai Zhong (2015)

Colloquium Mathematicae

Similarity:

Let G be a finite abelian group of rank r and let X be a zero-sum free sequence over G whose support supp(X) generates G. In 2009, Pixton proved that | Σ ( X ) | 2 r - 1 ( | X | - r + 2 ) - 1 for r ≤ 3. We show that this result also holds for abelian groups G of rank 4 if the smallest prime p dividing |G| satisfies p ≥ 13.