The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Existence of nonoscillatory and oscillatory solutions of neutral differential equations with positive and negative coefficients”

A note on the oscillation of second order differential equations

Hishyar Kh. Abdullah (2004)

Czechoslovak Mathematical Journal

Similarity:

We give a sufficient condition for the oscillation of linear homogeneous second order differential equation y ' ' + p ( x ) y ' + q ( x ) y = 0 , where p ( x ) , q ( x ) C [ α , ) and α is positive real number.

Integral averages and oscillation of second order sublinear differential equations

Jelena V. Manojlović (2005)

Czechoslovak Mathematical Journal

Similarity:

New oscillation criteria are given for the second order sublinear differential equation [ a ( t ) ψ ( x ( t ) ) x ' ( t ) ] ' + q ( t ) f ( x ( t ) ) = 0 , t t 0 > 0 , where a C 1 ( [ t 0 , ) ) is a nonnegative function, ψ , f C ( ) with ψ ( x ) 0 , x f ( x ) / ψ ( x ) > 0 for x 0 , ψ , f have continuous derivative on { 0 } with [ f ( x ) / ψ ( x ) ] ' 0 for x 0 and q C ( [ t 0 , ) ) has no restriction on its sign. This oscillation criteria involve integral averages of the coefficients q and a and extend known oscillation criteria for the equation x ' ' ( t ) + q ( t ) x ( t ) = 0 .

Asymptotic behaviour of solutions of two-dimensional linear differential systems with deviating arguments

Roman Koplatadze, N. L. Partsvania, Ioannis P. Stavroulakis (2003)

Archivum Mathematicum

Similarity:

Sufficient conditions are established for the oscillation of proper solutions of the system u 1 ' ( t ) = p ( t ) u 2 ( σ ( t ) ) , u 2 ' ( t ) = - q ( t ) u 1 ( τ ( t ) ) , where p , q : R + R + are locally summable functions, while τ and σ : R + R + are continuous and continuously differentiable functions, respectively, and lim t + τ ( t ) = + , lim t + σ ( t ) = + .