Displaying similar documents to “Leudesdorf's theorem and Bernoulli numbers”

A note on the congruence n p k m p k n m ( mod p r )

Romeo Meštrović (2012)

Czechoslovak Mathematical Journal

Similarity:

In the paper we discuss the following type congruences: n p k m p k m n ( mod p r ) , where p is a prime, n , m , k and r are various positive integers with n m 1 , k 1 and r 1 . Given positive integers k and r , denote by W ( k , r ) the set of all primes p such that the above congruence holds for every pair of integers n m 1 . Using Ljunggren’s and Jacobsthal’s type congruences, we establish several characterizations of sets W ( k , r ) and inclusion relations between them for various values k and r . In particular, we prove that W ( k + i , r ) = W ( k - 1 , r ) for all k 2 , i 0 and...

Congruences involving the Fermat quotient

Romeo Meštrović (2013)

Czechoslovak Mathematical Journal

Similarity:

Let p > 3 be a prime, and let q p ( 2 ) = ( 2 p - 1 - 1 ) / p be the Fermat quotient of p to base 2 . In this note we prove that k = 1 p - 1 1 k · 2 k q p ( 2 ) - p q p ( 2 ) 2 2 + p 2 q p ( 2 ) 3 3 - 7 48 p 2 B p - 3 ( mod p 3 ) , which is a generalization of a congruence due to Z. H. Sun. Our proof is based on certain combinatorial identities and congruences for some alternating harmonic sums. Combining the above congruence with two congruences by Z. H. Sun, we show that q p ( 2 ) 3 - 3 k = 1 p - 1 2 k k 3 + 7 16 k = 1 ( p - 1 ) / 2 1 k 3 ( mod p ) , which is just a result established by K. Dilcher and L. Skula. As another application, we obtain a congruence for the sum k = 1 p - 1 1 / ( k 2 · 2 k ) modulo p 2 that also generalizes...