Displaying similar documents to “Kuratowski convergence on compacta and Hausdorff metric convergence on compacta”

Best approximations and porous sets

Simeon Reich, Alexander J. Zaslavski (2003)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let D be a nonempty compact subset of a Banach space X and denote by S ( X ) the family of all nonempty bounded closed convex subsets of X . We endow S ( X ) with the Hausdorff metric and show that there exists a set S ( X ) such that its complement S ( X ) is σ -porous and such that for each A and each x ˜ D , the set of solutions of the best approximation problem x ˜ - z min , z A , is nonempty and compact, and each minimizing sequence has a convergent subsequence.

A β -normal Tychonoff space which is not normal

Eva Murtinová (2002)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

α -normality and β -normality are properties generalizing normality of topological spaces. They consist in separating dense subsets of closed disjoint sets. We construct an example of a Tychonoff β -normal non-normal space and an example of a Hausdorff α -normal non-regular space.