Best approximations and porous sets
Simeon Reich; Alexander J. Zaslavski
Commentationes Mathematicae Universitatis Carolinae (2003)
- Volume: 44, Issue: 4, page 681-689
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topReich, Simeon, and Zaslavski, Alexander J.. "Best approximations and porous sets." Commentationes Mathematicae Universitatis Carolinae 44.4 (2003): 681-689. <http://eudml.org/doc/249166>.
@article{Reich2003,
abstract = {Let $D$ be a nonempty compact subset of a Banach space $X$ and denote by $S(X)$ the family of all nonempty bounded closed convex subsets of $X$. We endow $S(X)$ with the Hausdorff metric and show that there exists a set $\mathcal \{F\} \subset S(X)$ such that its complement $S(X) \setminus \mathcal \{F\}$ is $\sigma $-porous and such that for each $A\in \mathcal \{F\}$ and each $\tilde\{x\}\in D$, the set of solutions of the best approximation problem $\Vert \tilde\{x\}-z\Vert \rightarrow \min $, $z \in A$, is nonempty and compact, and each minimizing sequence has a convergent subsequence.},
author = {Reich, Simeon, Zaslavski, Alexander J.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Banach space; complete metric space; generic property; Hausdorff metric; nearest point; porous set; Banach space; complete metric space; generic property; Hausdorff metric; nearest point; porous set},
language = {eng},
number = {4},
pages = {681-689},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Best approximations and porous sets},
url = {http://eudml.org/doc/249166},
volume = {44},
year = {2003},
}
TY - JOUR
AU - Reich, Simeon
AU - Zaslavski, Alexander J.
TI - Best approximations and porous sets
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2003
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 44
IS - 4
SP - 681
EP - 689
AB - Let $D$ be a nonempty compact subset of a Banach space $X$ and denote by $S(X)$ the family of all nonempty bounded closed convex subsets of $X$. We endow $S(X)$ with the Hausdorff metric and show that there exists a set $\mathcal {F} \subset S(X)$ such that its complement $S(X) \setminus \mathcal {F}$ is $\sigma $-porous and such that for each $A\in \mathcal {F}$ and each $\tilde{x}\in D$, the set of solutions of the best approximation problem $\Vert \tilde{x}-z\Vert \rightarrow \min $, $z \in A$, is nonempty and compact, and each minimizing sequence has a convergent subsequence.
LA - eng
KW - Banach space; complete metric space; generic property; Hausdorff metric; nearest point; porous set; Banach space; complete metric space; generic property; Hausdorff metric; nearest point; porous set
UR - http://eudml.org/doc/249166
ER -
References
top- Benyamini Y., Lindenstrauss J., Geometric Nonlinear Functional Analysis, Amer. Math. Soc. Providence, RI (2000). (2000) Zbl0946.46002MR1727673
- De Blasi F.S., Georgiev P.G., Myjak J., On porous sets and best approximation theory, preprint. Zbl1088.41015
- De Blasi F.S., Myjak J., On the minimum distance theorem to a closed convex set in a Banach space, Bull. Acad. Polon. Sci. 29 373-376 (1981). (1981) Zbl0515.41031MR0640331
- De Blasi F.S., Myjak J., On almost well posed problems in the theory of best approximation, Bull. Math. Soc. Sci. Math. R.S. Roum. 28 109-117 (1984). (1984) Zbl0593.41026MR0771542
- De Blasi F.S., Myjak J., Papini P.L., Porous sets in best approximation theory, J. London Math. Soc. 44 135-142 (1991). (1991) Zbl0786.41027MR1122975
- Furi M., Vignoli A., About well-posed minimization problems for functionals in metric spaces, J. Optim. Theory Appl. 5 225-229 (1970). (1970)
- Matoušková E., How small are the sets where the metric projection fails to be continuous, Acta Univ. Carolin. Math. Phys. 33 99-108 (1992). (1992) MR1287230
- Reich S., Zaslavski A.J., Asymptotic behavior of dynamical systems with a convex Lyapunov function, J. Nonlinear Convex Anal. 1 107-113 (2000). (2000) Zbl0984.37016MR1751731
- Reich S., Zaslavski A.J., Well-posedness and porosity in best approximation problems, Topol. Methods Nonlinear Anal. 18 395-408 (2001). (2001) Zbl1005.41011MR1911709
- Reich S., Zaslavski A.J., A porosity result in best approximation theory, J. Nonlinear Convex Anal. 4 165-173 (2003). (2003) Zbl1024.41017MR1986978
- L. Zajíček, On the Fréchet differentiability of distance functions, Suppl. Rend. Circ. Mat. Palermo (2) 5 161-165 (1984). (1984) MR0781948
- Zajíček L., Porosity and -porosity, Real Anal. Exchange 13 314-350 (1987). (1987) MR0943561
- Zajíček L., Small non--porous sets in topologically complete metric spaces, Colloq. Math. 77 293-304 (1998). (1998) MR1628994
- Zaslavski A.J., Well-posedness and porosity in optimal control without convexity assumptions, Calc. Var. 13 265-293 (2001). (2001) Zbl1032.49035MR1864999
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.