The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Pointwise convergence and the Wadge hierarchy”

Borel sets with σ-compact sections for nonseparable spaces

Petr Holický (2008)

Fundamenta Mathematicae

Similarity:

We prove that every (extended) Borel subset E of X × Y, where X is complete metric and Y is Polish, can be covered by countably many extended Borel sets with compact sections if the sections E x = y Y : ( x , y ) E , x ∈ X, are σ-compact. This is a nonseparable version of a theorem of Saint Raymond. As a by-product, we get a proof of Saint Raymond’s result which does not use transfinite induction.

Choquet simplexes whose set of extreme points is K -analytic

Michel Talagrand (1985)

Annales de l'institut Fourier

Similarity:

We construct a Choquet simplex K whose set of extreme points T is 𝒦 -analytic, but is not a 𝒦 -Borel set. The set T has the surprising property of being a K σ δ set in its Stone-Cech compactification. It is hence an example of a K σ δ set that is not absolute.

On embeddings into C p ( X ) where X is Lindelöf

Masami Sakai (1992)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A.V. Arkhangel’skii asked that, is it true that every space Y of countable tightness is homeomorphic to a subspace (to a closed subspace) of C p ( X ) where X is Lindelöf? C p ( X ) denotes the space of all continuous real-valued functions on a space X with the topology of pointwise convergence. In this note we show that the two arrows space is a counterexample for the problem by showing that every separable compact linearly ordered topological space is second countable if it is homeomorphic to a subspace...

An answer to a question of Arhangel'skii

Henryk Michalewski (2001)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove that there exists an example of a metrizable non-discrete space X , such that C p ( X × ω ) l C p ( X ) but C p ( X × S ) ¬ l C p ( X ) where S = ( { 0 } { 1 n + 1 : n ω } ) and C p ( X ) is the space of all continuous functions from X into reals equipped with the topology of pointwise convergence. It answers a question of Arhangel’skii ([2, Problem 4]).