The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Addition theorems and D -spaces”

On spaces with point-countable k -systems

Iwao Yoshioka (2004)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

This paper deals with the behavior of M -spaces, countably bi-quasi- k -spaces and singly bi-quasi- k -spaces with point-countable k -systems. For example, we show that every M -space with a point-countable k -system is locally compact paracompact, and every separable singly bi-quasi- k -space with a point-countable k -system has a countable k -system. Also, we consider equivalent relations among spaces entried in Table 1 in Michael’s paper [15] when the spaces have point-countable k -systems. ...

A generalization of Čech-complete spaces and Lindelöf Σ -spaces

Aleksander V. Arhangel'skii (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The class of s -spaces is studied in detail. It includes, in particular, all Čech-complete spaces, Lindelöf p -spaces, metrizable spaces with the weight 2 ω , but countable non-metrizable spaces and some metrizable spaces are not in it. It is shown that s -spaces are in a duality with Lindelöf Σ -spaces: X is an s -space if and only if some (every) remainder of X in a compactification is a Lindelöf Σ -space [Arhangel’skii A.V., Remainders of metrizable and close to metrizable spaces, Fund. Math....

Remainders of metrizable and close to metrizable spaces

A. V. Arhangel'skii (2013)

Fundamenta Mathematicae

Similarity:

We continue the study of remainders of metrizable spaces, expanding and applying results obtained in [Fund. Math. 215 (2011)]. Some new facts are established. In particular, the closure of any countable subset in the remainder of a metrizable space is a Lindelöf p-space. Hence, if a remainder of a metrizable space is separable, then this remainder is a Lindelöf p-space. If the density of a remainder Y of a metrizable space does not exceed 2 ω , then Y is a Lindelöf Σ-space. We also show...