Displaying similar documents to “Colouring polytopic partitions in d

An inequality concerning edges of minor weight in convex 3-polytopes

Igor Fabrici, Stanislav Jendrol' (1996)

Discussiones Mathematicae Graph Theory

Similarity:

Let e i j be the number of edges in a convex 3-polytope joining the vertices of degree i with the vertices of degree j. We prove that for every convex 3-polytope there is 20 e 3 , 3 + 25 e 3 , 4 + 16 e 3 , 5 + 10 e 3 , 6 + 6 [ 2 / 3 ] e 3 , 7 + 5 e 3 , 8 + 2 [ 1 / 2 ] e 3 , 9 + 2 e 3 , 10 + 16 [ 2 / 3 ] e 4 , 4 + 11 e 4 , 5 + 5 e 4 , 6 + 1 [ 2 / 3 ] e 4 , 7 + 5 [ 1 / 3 ] e 5 , 5 + 2 e 5 , 6 120 ; moreover, each coefficient is the best possible. This result brings a final answer to the conjecture raised by B. Grünbaum in 1973.

Finding H -partitions efficiently

Simone Dantas, Celina M. H. de Figueiredo, Sylvain Gravier, Sulamita Klein (2005)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Similarity:

We study the concept of an H -partition of the vertex set of a graph G , which includes all vertex partitioning problems into four parts which we require to be nonempty with only external constraints according to the structure of a model graph H , with the exception of two cases, one that has already been classified as polynomial, and the other one remains unclassified. In the context of more general vertex-partition problems, the problems addressed in this paper have these properties:...

Generalization of the Zlámal condition for simplicial finite elements in d

Jan Brandts, Sergey Korotov, Michal Křížek (2011)

Applications of Mathematics

Similarity:

The famous Zlámal’s minimum angle condition has been widely used for construction of a regular family of triangulations (containing nondegenerating triangles) as well as in convergence proofs for the finite element method in 2 d . In this paper we present and discuss its generalization to simplicial partitions in any space dimension.