Displaying similar documents to “Cyclic and dihedral constructions of even order”

The Hughes subgroup

Robert Bryce (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

Let G be a group and p a prime. The subgroup generated by the elements of order different from p is called the Hughes subgroup for exponent p . Hughes [3] made the following conjecture: if H p G is non-trivial, its index in G is at most p . There are many articles that treat this problem. In the present Note we examine those of Strauss and Szekeres [9], which treats the case p = 3 and G arbitrary, and that of Hogan and Kappe [2] concerning the case when G is metabelian, and p arbitrary. A common...

Explicit Selmer groups for cyclic covers of ℙ¹

Michael Stoll, Ronald van Luijk (2013)

Acta Arithmetica

Similarity:

For any abelian variety J over a global field k and an isogeny ϕ: J → J, the Selmer group S e l ϕ ( J , k ) is a subgroup of the Galois cohomology group H ¹ ( G a l ( k s / k ) , J [ ϕ ] ) , defined in terms of local data. When J is the Jacobian of a cyclic cover of ℙ¹ of prime degree p, the Selmer group has a quotient by a subgroup of order at most p that is isomorphic to the ‘fake Selmer group’, whose definition is more amenable to explicit computations. In this paper we define in the same setting the ‘explicit Selmer group’, which...

On the order of transitive permutation groups with cyclic point-stabilizer

Andrea Lucchini (1998)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

If G is a transitive permutation group of degree n with cyclic point-stabilizer, then the order of G is at most n 2 n .

A characterization of the linear groups L 2 ( p )

Alireza Khalili Asboei, Ali Iranmanesh (2014)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group and π e ( G ) be the set of element orders of G . Let k π e ( G ) and m k be the number of elements of order k in G . Set nse ( G ) : = { m k : k π e ( G ) } . In fact nse ( G ) is the set of sizes of elements with the same order in G . In this paper, by nse ( G ) and order, we give a new characterization of finite projective special linear groups L 2 ( p ) over a field with p elements, where p is prime. We prove the following theorem: If G is a group such that | G | = | L 2 ( p ) | and nse ( G ) consists of 1 , p 2 - 1 , p ( p + ϵ ) / 2 and some numbers divisible by 2 p , where p is a prime...