Displaying similar documents to “Finiteness of a class of Rabinowitsch polynomials”

Generalizing a theorem of Schur

Lenny Jones (2014)

Czechoslovak Mathematical Journal

Similarity:

In a letter written to Landau in 1935, Schur stated that for any integer t > 2 , there are primes p 1 < p 2 < < p t such that p 1 + p 2 > p t . In this note, we use the Prime Number Theorem and extend Schur’s result to show that for any integers t k 1 and real ϵ > 0 , there exist primes p 1 < p 2 < < p t such that p 1 + p 2 + + p k > ( k - ϵ ) p t .

On prime values of reducible quadratic polynomials

W. Narkiewicz, T. Pezda (2002)

Colloquium Mathematicae

Similarity:

It is shown that Dickson’s Conjecture about primes in linear polynomials implies that if f is a reducible quadratic polynomial with integral coefficients and non-zero discriminant then for every r there exists an integer N r such that the polynomial f ( X ) / N r represents at least r distinct primes.

Truncatable primes and unavoidable sets of divisors

Artūras Dubickas (2006)

Acta Mathematica Universitatis Ostraviensis

Similarity:

We are interested whether there is a nonnegative integer u 0 and an infinite sequence of digits u 1 , u 2 , u 3 , in base b such that the numbers u 0 b n + u 1 b n - 1 + + u n - 1 b + u n , where n = 0 , 1 , 2 , , are all prime or at least do not have prime divisors in a finite set of prime numbers S . If any such sequence contains infinitely many elements divisible by at least one prime number p S , then we call the set S unavoidable with respect to b . It was proved earlier that unavoidable sets in base b exist if b { 2 , 3 , 4 , 6 } , and that no unavoidable set exists in base b = 5 . Now,...

Linear recurrence sequences without zeros

Artūras Dubickas, Aivaras Novikas (2014)

Czechoslovak Mathematical Journal

Similarity:

Let a d - 1 , , a 0 , where d and a 0 0 , and let X = ( x n ) n = 1 be a sequence of integers given by the linear recurrence x n + d = a d - 1 x n + d - 1 + + a 0 x n for n = 1 , 2 , 3 , . We show that there are a prime number p and d integers x 1 , , x d such that no element of the sequence X = ( x n ) n = 1 defined by the above linear recurrence is divisible by p . Furthermore, for any nonnegative integer s there is a prime number p 3 and d integers x 1 , , x d such that every element of the sequence X = ( x n ) n = 1 defined as above modulo p belongs to the set { s + 1 , s + 2 , , p - s - 1 } .

The largest prime factor of X³ + 2

A. J. Irving (2015)

Acta Arithmetica

Similarity:

Improving on a theorem of Heath-Brown, we show that if X is sufficiently large then a positive proportion of the values n³ + 2: n ∈ (X,2X] have a prime factor larger than X 1 + 10 - 52 .

On sets which contain a qth power residue for almost all prime modules

Mariusz Ska/lba (2005)

Colloquium Mathematicae

Similarity:

A classical theorem of M. Fried [2] asserts that if non-zero integers β , . . . , β l have the property that for each prime number p there exists a quadratic residue β j mod p then a certain product of an odd number of them is a square. We provide generalizations for power residues of degree n in two cases: 1) n is a prime, 2) n is a power of an odd prime. The proofs involve some combinatorial properties of finite Abelian groups and arithmetic results of [3].