Displaying similar documents to “The joint distribution of Q -additive functions on polynomials over finite fields”

Partial sums of Taylor series on a circle

E. S. Katsoprinakis, V. N. Nestoridis (1989)

Annales de l'institut Fourier

Similarity:

We characterize the power series n = 0 c n z n with the geometric property that, for sufficiently many points z , | z | = 1 , a circle C ( z ) contains infinitely many partial sums. We show that n = 0 c n z n is a rational function of special type; more precisely, there are t and n 0 , such that, the sequence c n e int , n n 0 , is periodic. This result answers in the affirmative a question of J.-P. Kahane and furnishes stronger versions of the main results of [Katsoprinakis, Arkiv for Matematik]. We are led to consider special families of...

The distribution of the values of a rational function modulo a big prime

Alexandru Zaharescu (2003)

Journal de théorie des nombres de Bordeaux

Similarity:

Given a large prime number p and a rational function r ( X ) defined over 𝔽 p = / p , we investigate the size of the set x 𝔽 p : r ˜ ( x ) > r ˜ ( x + 1 ) , where r ˜ ( x ) and r ˜ ( x + 1 ) denote the least positive representatives of r ( x ) and r ( x + 1 ) in modulo p .

An almost-sure estimate for the mean of generalized Q -multiplicative functions of modulus 1

Jean-Loup Mauclaire (2000)

Journal de théorie des nombres de Bordeaux

Similarity:

Let Q = ( Q k ) k 0 , Q 0 = 1 , Q k + 1 = q k Q k , q k 2 , be a Cantor scale, 𝐙 Q the compact projective limit group of the groups 𝐙 / Q k 𝐙 , identified to 0 j k - 1 𝐙 / q j 𝐙 , and let μ be its normalized Haar measure. To an element x = { a 0 , a 1 , a 2 , } , 0 a k q k + 1 - 1 , of 𝐙 Q we associate the sequence of integral valued random variables x k = 0 j k a j Q j . The main result of this article is that, given a complex 𝐐 -multiplicative function g of modulus 1 , we have lim x k x ( 1 x k n x k - 1 g ( n ) - 0 j k 1 q j 0 a q j g ( a Q j ) ) = 0 μ -a.e .

Degree of the fibres of an elliptic fibration

Alexandru Buium (1983)

Annales de l'institut Fourier

Similarity:

Let X B an elliptic fibration with general fibre F . Let n e , n s , n a , n v be the minima of the non-zero intersection numbers ( , F ) where runs successively through the following sets: effective divisors on X , invertible sheaves spanned by global sections, ample divisors and very ample divisors. Let m be the maximum of the multiplicities of the fibres of X B . We prove that n e = n s if and only if n e 2 m and that n a = n v if and only if n a 3 m .

Sets in N with vanishing global extremal function and polynomial approximation

Józef Siciak (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Let Γ be a non-pluripolar set in N . Let f be a function holomorphic in a connected open neighborhood G of Γ . Let { P n } be a sequence of polynomials with deg P n d n ( d n < d n + 1 ) such that lim sup n | f ( z ) - P n ( z ) | 1 / d n < 1 , z Γ . We show that if lim sup n | P n ( z ) | 1 / d n 1 , z E , where E is a set in N such that the global extremal function V E 0 in N , then the maximal domain of existence G f of f is one-sheeted, and lim sup n f - P n K 1 d n < 1 for every compact set K G f . If, moreover, the sequence { d n + 1 / d n } is bounded then G f = N . If E is a closed...

The distribution of powers of integers in algebraic number fields

Werner Georg Nowak, Johannes Schoißengeier (2004)

Journal de Théorie des Nombres de Bordeaux

Similarity:

For an arbitrary (not totally real) number field K of degree 3 , we ask how many perfect powers γ p of algebraic integers γ in K exist, such that μ ( τ ( γ p ) ) X for each embedding τ of K into the complex field. ( X a large real parameter, p 2 a fixed integer, and μ ( z ) = max ( | Re ( z ) | , | Im ( z ) | ) for any complex z .) This quantity is evaluated asymptotically in the form c p , K X n / p + R p , K ( X ) , with sharp estimates for the remainder R p , K ( X ) . The argument uses techniques from lattice point theory along with W. Schmidt’s multivariate extension of K.F. Roth’s result...