An almost-sure estimate for the mean of generalized Q -multiplicative functions of modulus 1

Jean-Loup Mauclaire

Journal de théorie des nombres de Bordeaux (2000)

  • Volume: 12, Issue: 1, page 1-12
  • ISSN: 1246-7405

Abstract

top
Let Q = ( Q k ) k 0 , Q 0 = 1 , Q k + 1 = q k Q k , q k 2 , be a Cantor scale, 𝐙 Q the compact projective limit group of the groups 𝐙 / Q k 𝐙 , identified to 0 j k - 1 𝐙 / q j 𝐙 , and let μ be its normalized Haar measure. To an element x = { a 0 , a 1 , a 2 , } , 0 a k q k + 1 - 1 , of 𝐙 Q we associate the sequence of integral valued random variables x k = 0 j k a j Q j . The main result of this article is that, given a complex 𝐐 -multiplicative function g of modulus 1 , we have lim x k x ( 1 x k n x k - 1 g ( n ) - 0 j k 1 q j 0 a q j g ( a Q j ) ) = 0 μ -a.e .

How to cite

top

Mauclaire, Jean-Loup. "An almost-sure estimate for the mean of generalized $Q$-multiplicative functions of modulus $1$." Journal de théorie des nombres de Bordeaux 12.1 (2000): 1-12. <http://eudml.org/doc/248499>.

@article{Mauclaire2000,
abstract = {Let $Q = \{(Q_k)\}_\{k \ge 0\}, Q_0 = 1, Q_\{k+1\} = q_kQ_k, q_k \ge 2$, be a Cantor scale, $\mathbf \{Z\}_Q$ the compact projective limit group of the groups $\mathbf \{Z\}/Q_k\mathbf \{Z\}$, identified to $\prod _\{0 \le j \le k-1\} \mathbf \{Z\}/q_j\mathbf \{Z\}$, and let $\mu $ be its normalized Haar measure. To an element $x = \lbrace a_0, a_1, a_2, \dots \rbrace , 0 \le a_k \le q_\{k+1\} - 1$, of $\mathbf \{Z\}_Q$ we associate the sequence of integral valued random variables $x_k = \sum _\{ 0 \le j \le k\} a_jQ_j$. The main result of this article is that, given a complex $\mathbf \{Q\}$-multiplicative function $g$ of modulus $1$, we have\begin\{equation*\}\lim \_\{x\_k \rightarrow x\} (\frac\{1\}\{x\_k\} \sum \_\{n\le x\_k-1\} g(n)- \prod \_\{0\le j \le k\} \frac\{1\}\{q\_j\} \sum \_\{0 \le a\le q\_j\} g(aQ\_j)) = 0 \quad \mu \text\{-a.e\}.\end\{equation*\}},
author = {Mauclaire, Jean-Loup},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {almost-sure estimate; mean value; -multiplicative functions},
language = {eng},
number = {1},
pages = {1-12},
publisher = {Université Bordeaux I},
title = {An almost-sure estimate for the mean of generalized $Q$-multiplicative functions of modulus $1$},
url = {http://eudml.org/doc/248499},
volume = {12},
year = {2000},
}

TY - JOUR
AU - Mauclaire, Jean-Loup
TI - An almost-sure estimate for the mean of generalized $Q$-multiplicative functions of modulus $1$
JO - Journal de théorie des nombres de Bordeaux
PY - 2000
PB - Université Bordeaux I
VL - 12
IS - 1
SP - 1
EP - 12
AB - Let $Q = {(Q_k)}_{k \ge 0}, Q_0 = 1, Q_{k+1} = q_kQ_k, q_k \ge 2$, be a Cantor scale, $\mathbf {Z}_Q$ the compact projective limit group of the groups $\mathbf {Z}/Q_k\mathbf {Z}$, identified to $\prod _{0 \le j \le k-1} \mathbf {Z}/q_j\mathbf {Z}$, and let $\mu $ be its normalized Haar measure. To an element $x = \lbrace a_0, a_1, a_2, \dots \rbrace , 0 \le a_k \le q_{k+1} - 1$, of $\mathbf {Z}_Q$ we associate the sequence of integral valued random variables $x_k = \sum _{ 0 \le j \le k} a_jQ_j$. The main result of this article is that, given a complex $\mathbf {Q}$-multiplicative function $g$ of modulus $1$, we have\begin{equation*}\lim _{x_k \rightarrow x} (\frac{1}{x_k} \sum _{n\le x_k-1} g(n)- \prod _{0\le j \le k} \frac{1}{q_j} \sum _{0 \le a\le q_j} g(aQ_j)) = 0 \quad \mu \text{-a.e}.\end{equation*}
LA - eng
KW - almost-sure estimate; mean value; -multiplicative functions
UR - http://eudml.org/doc/248499
ER -

References

top
  1. [1] G. Barat, Echelles de numération et fonctions arithmétiques associées. Thèse de doctorat, Université de Provence, Marseille, 1995. 
  2. [2] J. Coquet, Sur les fonctions S-multiplicatives et S-additives. Thèse de doctorat de Troisième Cycle, Université Paris-Sud, Orsay, 1975. Zbl0383.10032
  3. [3] H. Delange, Sur les fonctions q-additives ou q-multiplicatives. Acta Arithmetica21 (1972), 285-298. Zbl0219.10062MR309891
  4. [4] A.O. Gelfond, Sur les nombres qui ont des propriétés additives ou multiplicatives données. Acta Arithmetica13 (1968), 259-265. Zbl0155.09003MR220693
  5. [5] E. Hewit, K.A. Ross, Abstract harmonic analysis. Springer-Verlag, 1963. Zbl0115.10603
  6. [6] E. Manstavicius, Probabilistic theory of additive functions related to systems of numeration. New trends in Probability and Statistics Vol. 4 (1997), VSP BV & TEV, 412-429. Zbl0964.11031MR1653594
  7. [7] J.-L. Mauclaire, Sur la repartition des fonctions q-additives. J. Théorie des Nombres de Bordeaux5 (1993), 79-91. Zbl0788.11032MR1251228

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.