Displaying similar documents to “Equivariant mappings from vector product into G -space of vectors and ε -vectors with G = O ( n , 1 , )

Equivariant mappings from vector product into G -spaces of ϕ -scalars with G = O n , 1 ,

Barbara Glanc, Aleksander Misiak, Maria Szmuksta-Zawadzka (2007)

Mathematica Bohemica

Similarity:

There are four kinds of scalars in the n -dimensional pseudo-Euclidean geometry of index one. In this note, we determine all scalars as concomitants of a system of m n linearly independent contravariant vectors of two so far missing types. The problem is resolved by finding the general solution of the functional equation F ( A 1 u , A 2 u , , A m u ) = ϕ A · F ( 1 u , 2 u , , m u ) using two homomorphisms ϕ from a group G into the group of real numbers 0 = 0 , · .

Equivariant maps between certain G -spaces with  G = O ( n - 1 , 1 ) .

Aleksander Misiak, Eugeniusz Stasiak (2001)

Mathematica Bohemica

Similarity:

In this note, there are determined all biscalars of a system of s n linearly independent contravariant vectors in n -dimensional pseudo-Euclidean geometry of index one. The problem is resolved by finding a general solution of the functional equation F ( A 1 u , A 2 u , , A s u ) = ( sign ( det A ) ) F ( 1 u , 2 u , , s u ) for an arbitrary pseudo-orthogonal matrix A of index one and the given vectors 1 u , 2 u , , s u .

G -space of isotropic directions and G -spaces of ϕ -scalars with G = O ( n , 1 , )

Aleksander Misiak, Eugeniusz Stasiak (2008)

Mathematica Bohemica

Similarity:

There exist exactly four homomorphisms ϕ from the pseudo-orthogonal group of index one G = O ( n , 1 , ) into the group of real numbers 0 . Thus we have four G -spaces of ϕ -scalars ( , G , h ϕ ) in the geometry of the group G . The group G operates also on the sphere S n - 2 forming a G -space of isotropic directions ( S n - 2 , G , * ) . In this note, we have solved the functional equation F ( A * q 1 , A * q 2 , , A * q m ) = ϕ ( A ) · F ( q 1 , q 2 , , q m ) for given independent points q 1 , q 2 , , q m S n - 2 with 1 m n and an arbitrary matrix A G considering each of all four homomorphisms. Thereby we have determined all equivariant mappings...