Equivariant maps between certain G -spaces with  G = O ( n - 1 , 1 ) .

Aleksander Misiak; Eugeniusz Stasiak

Mathematica Bohemica (2001)

  • Volume: 126, Issue: 3, page 555-560
  • ISSN: 0862-7959

Abstract

top
In this note, there are determined all biscalars of a system of s n linearly independent contravariant vectors in n -dimensional pseudo-Euclidean geometry of index one. The problem is resolved by finding a general solution of the functional equation F ( A 1 u , A 2 u , , A s u ) = ( sign ( det A ) ) F ( 1 u , 2 u , , s u ) for an arbitrary pseudo-orthogonal matrix A of index one and the given vectors 1 u , 2 u , , s u .

How to cite

top

Misiak, Aleksander, and Stasiak, Eugeniusz. "Equivariant maps between certain $G$-spaces with $G=O( n-1,1)$.." Mathematica Bohemica 126.3 (2001): 555-560. <http://eudml.org/doc/248881>.

@article{Misiak2001,
abstract = {In this note, there are determined all biscalars of a system of $s\le n$ linearly independent contravariant vectors in $n$-dimensional pseudo-Euclidean geometry of index one. The problem is resolved by finding a general solution of the functional equation $F(A\{\underset\{1\}\{\rightarrow \}u\},A \{\underset\{2\}\{\rightarrow \}u\},\dots ,A\{\underset\{s\}\{\rightarrow \}u\}) =( \text\{sign\}( \det A)) F (\{\underset\{1\}\{\rightarrow \}u\},\{\underset\{2\}\{\rightarrow \}u\},\dots ,\{\underset\{s\}\{\rightarrow \}u\}) $ for an arbitrary pseudo-orthogonal matrix $A$ of index one and the given vectors $\{\underset\{1\}\{\rightarrow \}u\}, \{\underset\{2\}\{\rightarrow \}u\},\dots ,\{\underset\{s\}\{\rightarrow \}u\}$.},
author = {Misiak, Aleksander, Stasiak, Eugeniusz},
journal = {Mathematica Bohemica},
keywords = {$G$-space; equivariant map; vector; scalar; biscalar; -space; equivariant map; vector; scalar; biscalar},
language = {eng},
number = {3},
pages = {555-560},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Equivariant maps between certain $G$-spaces with $G=O( n-1,1)$.},
url = {http://eudml.org/doc/248881},
volume = {126},
year = {2001},
}

TY - JOUR
AU - Misiak, Aleksander
AU - Stasiak, Eugeniusz
TI - Equivariant maps between certain $G$-spaces with $G=O( n-1,1)$.
JO - Mathematica Bohemica
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 126
IS - 3
SP - 555
EP - 560
AB - In this note, there are determined all biscalars of a system of $s\le n$ linearly independent contravariant vectors in $n$-dimensional pseudo-Euclidean geometry of index one. The problem is resolved by finding a general solution of the functional equation $F(A{\underset{1}{\rightarrow }u},A {\underset{2}{\rightarrow }u},\dots ,A{\underset{s}{\rightarrow }u}) =( \text{sign}( \det A)) F ({\underset{1}{\rightarrow }u},{\underset{2}{\rightarrow }u},\dots ,{\underset{s}{\rightarrow }u}) $ for an arbitrary pseudo-orthogonal matrix $A$ of index one and the given vectors ${\underset{1}{\rightarrow }u}, {\underset{2}{\rightarrow }u},\dots ,{\underset{s}{\rightarrow }u}$.
LA - eng
KW - $G$-space; equivariant map; vector; scalar; biscalar; -space; equivariant map; vector; scalar; biscalar
UR - http://eudml.org/doc/248881
ER -

References

top
  1. Funktionalgleichungen der Theorie der geometrischen Objekte, P.W.N Warszawa, 1960. (1960) MR0133763
  2. Sur deux formes équivalentes de la notion de ( r , s ) -orientation de la géométrie de Klein, Publ. Math. Debrecen 35 (1988), 43–50. (1988) MR0971951
  3. Invariant Theory, Academic Press, New York, 1971. (1971) MR0279102
  4. Über die Grundlagen der Kleinschen Geometrie, Period. Math. Hung. 8 (1977), 83–89. (1977) Zbl0335.50001MR0493695
  5. O pewnym działaniu grupy pseudoortogonalnej o indeksie jeden O ( n , 1 , R ) na sferze S n - 2 , Prace Naukowe P. S., 485, Szczecin, 1993. (1993) 
  6. Scalar concomitants of a system of vectors in pseudo-Euclidean geometry of index 1, Publ. Math. Debrecen 57 (2000), 55–69. (2000) Zbl0966.53012MR1771671

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.