Equivariant maps between certain -spaces with .
Aleksander Misiak; Eugeniusz Stasiak
Mathematica Bohemica (2001)
- Volume: 126, Issue: 3, page 555-560
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMisiak, Aleksander, and Stasiak, Eugeniusz. "Equivariant maps between certain $G$-spaces with $G=O( n-1,1)$.." Mathematica Bohemica 126.3 (2001): 555-560. <http://eudml.org/doc/248881>.
@article{Misiak2001,
abstract = {In this note, there are determined all biscalars of a system of $s\le n$ linearly independent contravariant vectors in $n$-dimensional pseudo-Euclidean geometry of index one. The problem is resolved by finding a general solution of the functional equation $F(A\{\underset\{1\}\{\rightarrow \}u\},A \{\underset\{2\}\{\rightarrow \}u\},\dots ,A\{\underset\{s\}\{\rightarrow \}u\}) =( \text\{sign\}( \det A)) F (\{\underset\{1\}\{\rightarrow \}u\},\{\underset\{2\}\{\rightarrow \}u\},\dots ,\{\underset\{s\}\{\rightarrow \}u\}) $ for an arbitrary pseudo-orthogonal matrix $A$ of index one and the given vectors $\{\underset\{1\}\{\rightarrow \}u\}, \{\underset\{2\}\{\rightarrow \}u\},\dots ,\{\underset\{s\}\{\rightarrow \}u\}$.},
author = {Misiak, Aleksander, Stasiak, Eugeniusz},
journal = {Mathematica Bohemica},
keywords = {$G$-space; equivariant map; vector; scalar; biscalar; -space; equivariant map; vector; scalar; biscalar},
language = {eng},
number = {3},
pages = {555-560},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Equivariant maps between certain $G$-spaces with $G=O( n-1,1)$.},
url = {http://eudml.org/doc/248881},
volume = {126},
year = {2001},
}
TY - JOUR
AU - Misiak, Aleksander
AU - Stasiak, Eugeniusz
TI - Equivariant maps between certain $G$-spaces with $G=O( n-1,1)$.
JO - Mathematica Bohemica
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 126
IS - 3
SP - 555
EP - 560
AB - In this note, there are determined all biscalars of a system of $s\le n$ linearly independent contravariant vectors in $n$-dimensional pseudo-Euclidean geometry of index one. The problem is resolved by finding a general solution of the functional equation $F(A{\underset{1}{\rightarrow }u},A {\underset{2}{\rightarrow }u},\dots ,A{\underset{s}{\rightarrow }u}) =( \text{sign}( \det A)) F ({\underset{1}{\rightarrow }u},{\underset{2}{\rightarrow }u},\dots ,{\underset{s}{\rightarrow }u}) $ for an arbitrary pseudo-orthogonal matrix $A$ of index one and the given vectors ${\underset{1}{\rightarrow }u}, {\underset{2}{\rightarrow }u},\dots ,{\underset{s}{\rightarrow }u}$.
LA - eng
KW - $G$-space; equivariant map; vector; scalar; biscalar; -space; equivariant map; vector; scalar; biscalar
UR - http://eudml.org/doc/248881
ER -
References
top- Funktionalgleichungen der Theorie der geometrischen Objekte, P.W.N Warszawa, 1960. (1960) MR0133763
- Sur deux formes équivalentes de la notion de -orientation de la géométrie de Klein, Publ. Math. Debrecen 35 (1988), 43–50. (1988) MR0971951
- Invariant Theory, Academic Press, New York, 1971. (1971) MR0279102
- 10.1007/BF02018051, Period. Math. Hung. 8 (1977), 83–89. (1977) Zbl0335.50001MR0493695DOI10.1007/BF02018051
- O pewnym działaniu grupy pseudoortogonalnej o indeksie jeden na sferze , Prace Naukowe P. S., 485, Szczecin, 1993. (1993)
- Scalar concomitants of a system of vectors in pseudo-Euclidean geometry of index 1, Publ. Math. Debrecen 57 (2000), 55–69. (2000) Zbl0966.53012MR1771671
Citations in EuDML Documents
top- Barbara Glanc, Aleksander Misiak, Zofia Stepień, Equivariant mappings from vector product into -space of vectors and -vectors with
- Barbara Glanc, Aleksander Misiak, Maria Szmuksta-Zawadzka, Equivariant mappings from vector product into -spaces of -scalars with
- Aleksander Misiak, Eugeniusz Stasiak, -space of isotropic directions and -spaces of -scalars with
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.