The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The geometrical quantity in damped wave equations on a square”

Radiation conditions at the top of a rotational cusp in the theory of water-waves

Sergey A. Nazarov, Jari Taskinen (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We study the linearized water-wave problem in a bounded domain ( a finite pond of water) of 3 , having a cuspidal boundary irregularity created by a submerged body. In earlier publications the authors discovered that in this situation the spectrum of the problem may contain a continuous component in spite of the boundedness of the domain. Here, we proceed to impose and study radiation conditions at a point 𝒪 of the water surface, where a submerged body touches the surface (see...

An Ingham type proof for a two-grid observability theorem

Paola Loreti, Michel Mehrenberger (2007)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Here, we prove the uniform observability of a two-grid method for the semi-discretization of the -wave equation for a time T > 2 2 ; this time, if the observation is made in ( - T / 2 , T / 2 ) , is optimal and this result improves an earlier work of Negreanu and Zuazua [ (2004) 413–418]. Our proof follows an Ingham type approach.

How to get a conservative well-posed linear system out of thin air. Part I. Well-posedness and energy balance

George Weiss, Marius Tucsnak (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Let be a possibly unbounded positive operator on the Hilbert space , which is boundedly invertible. Let be a bounded operator from 𝒟 A 0 1 2 to another Hilbert space . We prove that the system of equations z ¨ ( t ) + A 0 z ( t ) + 1 2 C 0 * C 0 z ˙ ( t ) = C 0 * u ( t ) y ( t ) = - C 0 z ˙ ( t ) + u ( t ) , determines a well-posed linear system with input and output . The state of this system is x ( t ) = z ( t ) z ˙ ( t ) 𝒟 A 0 1 2 × H = X , where is the state space. Moreover, we have the energy identity x ( t ) X 2 - x ( 0 ) X 2 = 0 T u ( t ) U 2 d t - 0 T y ( t ) U 2 d t . We show that the system described above is isomorphic to its dual, so that...