An Ingham type proof for a two-grid observability theorem
Paola Loreti; Michel Mehrenberger
ESAIM: Control, Optimisation and Calculus of Variations (2007)
- Volume: 14, Issue: 3, page 604-631
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topLoreti, Paola, and Mehrenberger, Michel. "An Ingham type proof for a two-grid observability theorem." ESAIM: Control, Optimisation and Calculus of Variations 14.3 (2007): 604-631. <http://eudml.org/doc/90886>.
@article{Loreti2007,
abstract = {
Here, we prove the uniform observability of a two-grid method
for the semi-discretization of the 1D-wave equation for a time $T>2\sqrt\{2\}$;
this time, if the observation is made in $(-T/2,T/2)$, is optimal and this result improves an earlier work of Negreanu and Zuazua [C. R. Acad. Sci. Paris Sér. I338 (2004) 413–418].
Our proof follows an Ingham type approach.
},
author = {Loreti, Paola, Mehrenberger, Michel},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Uniform observability; two-grid method; Ingham type theorem; uniform observability; 1D-wave equation},
language = {eng},
month = {12},
number = {3},
pages = {604-631},
publisher = {EDP Sciences},
title = {An Ingham type proof for a two-grid observability theorem},
url = {http://eudml.org/doc/90886},
volume = {14},
year = {2007},
}
TY - JOUR
AU - Loreti, Paola
AU - Mehrenberger, Michel
TI - An Ingham type proof for a two-grid observability theorem
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2007/12//
PB - EDP Sciences
VL - 14
IS - 3
SP - 604
EP - 631
AB -
Here, we prove the uniform observability of a two-grid method
for the semi-discretization of the 1D-wave equation for a time $T>2\sqrt{2}$;
this time, if the observation is made in $(-T/2,T/2)$, is optimal and this result improves an earlier work of Negreanu and Zuazua [C. R. Acad. Sci. Paris Sér. I338 (2004) 413–418].
Our proof follows an Ingham type approach.
LA - eng
KW - Uniform observability; two-grid method; Ingham type theorem; uniform observability; 1D-wave equation
UR - http://eudml.org/doc/90886
ER -
References
top- C. Castro and S. Micu, Boundary controllability of a linear semi-discrete 1D wave equation derived from a mixed finite element method. Numer. Math.102 (2006) 413–462.
- R. Glowinski, C.H. Li and J.-L. Lions, A numerical approach to the exact boundary controllability of the wave equation (I), Dirichlet controls: Description of the numerical methods. Japan. J. Appl. Math.7 (1990) 1–76.
- A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire. J. Math. Pures Appl.68 (1989) 457–465.
- L. Ignat, Propiedades cualitativas de esquemas numéricos de aproximción de ecuaciones de difusión y de dispersión. Ph.D. thesis, Universidad Autónoma de Madrid, Spain (2006).
- J.A. Infante and E. Zuazua, Boundary observability for the space discretization of the 1D wave equation. ESAIM: M2AN33 (1999) 407–438.
- A.E. Ingham, Some trigonometrical inequalities with applications in the theory of series. Math. Z.41 (1936) 367–379.
- V. Komornik, Exact Controllability and Stabilization. The Multiplier Method. Wiley, Chichester; Masson, Paris (1994).
- V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer Monographs in Mathematics. Springer-Verlag, New York (2005).
- J.-L. Lions, Contrôlabilité Exacte, Stabilisation et Perturbation de Systèmes Distribués. Tome 1. Contrôlabilité Exacte. Masson, Paris, RMA 8 (1988).
- P. Loreti and V. Valente, Partial exact controllability for spherical membranes. SIAM J. Control Optim.35 (1997) 641–653.
- S. Micu, Uniform boundary controllability of a semi-discrete 1D wave equation. Numer. Math.91 (2002) 723–766.
- S. Micu and E. Zuazua, Boundary controllability of a linear hybrid system arising in the control of noise. SIAM J. Cont. Optim.35 (1997) 1614–1638.
- A. Münch, Family of implicit and controllable schemes for the 1D wave equation. C. R. Acad. Sci. Paris Sér. I339 (2004) 733–738.
- M. Negreanu, Numerical methods for the analysis of the propagation, observation and control of waves. Ph.D. thesis, Universidad Complutense Madrid, Spain (2003). Available at URIhttp://www.uam.es/proyectosinv/cen/indocumentos.html
- M. Negreanu and E. Zuazua, Convergence of a multigrid method for the controllability of a 1D wave equation. C. R. Acad. Sci. Paris, Sér. I338 (2004) 413–418.
- M. Negreanu and E. Zuazua, Discrete Ingham inequalities and applications. SIAM J. Numer. Anal.44 (2006) 412–448.
- E. Zuazua, Propagation, observation, control and numerical approximation of waves approximated by finite difference methods. SIAM Rev.47 (2005) 197–243.
- E. Zuazua, Control and numerical approximation of the wave and heat equations, in Proceedings of the ICM 2006, Vol. III, “Invited Lectures", European Mathematical Society Publishing House, M. Sanz-Solé et al. Eds. (2006) 1389–1417.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.