Displaying similar documents to “On three equivalences concerning Ponomarev-systems”

A note on splittable spaces

Vladimir Vladimirovich Tkachuk (1992)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A space X is splittable over a space Y (or splits over Y ) if for every A X there exists a continuous map f : X Y with f - 1 f A = A . We prove that any n -dimensional polyhedron splits over 𝐑 2 n but not necessarily over 𝐑 2 n - 2 . It is established that if a metrizable compact X splits over 𝐑 n , then dim X n . An example of n -dimensional compact space which does not split over 𝐑 2 n is given.

Countable compactness and p -limits

Salvador García-Ferreira, Artur Hideyuki Tomita (2001)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For M ω * , we say that X is quasi M -compact, if for every f : ω X there is p M such that f ¯ ( p ) X , where f ¯ is the Stone-Čech extension of f . In this context, a space X is countably compact iff X is quasi ω * -compact. If X is quasi M -compact and M is either finite or countable discrete in ω * , then all powers of X are countably compact. Assuming C H , we give an example of a countable subset M ω * and a quasi M -compact space X whose square is not countably compact, and show that in a model of A. Blass and S. Shelah...