A note on splittable spaces

Vladimir Vladimirovich Tkachuk

Commentationes Mathematicae Universitatis Carolinae (1992)

  • Volume: 33, Issue: 3, page 551-555
  • ISSN: 0010-2628

Abstract

top
A space X is splittable over a space Y (or splits over Y ) if for every A X there exists a continuous map f : X Y with f - 1 f A = A . We prove that any n -dimensional polyhedron splits over 𝐑 2 n but not necessarily over 𝐑 2 n - 2 . It is established that if a metrizable compact X splits over 𝐑 n , then dim X n . An example of n -dimensional compact space which does not split over 𝐑 2 n is given.

How to cite

top

Tkachuk, Vladimir Vladimirovich. "A note on splittable spaces." Commentationes Mathematicae Universitatis Carolinae 33.3 (1992): 551-555. <http://eudml.org/doc/247369>.

@article{Tkachuk1992,
abstract = {A space $X$ is splittable over a space $Y$ (or splits over $Y$) if for every $A\subset X$ there exists a continuous map $f:X\rightarrow Y$ with $f^\{-1\} f A=A$. We prove that any $n$-dimensional polyhedron splits over $\mathbf \{R\}^\{2n\}$ but not necessarily over $\mathbf \{R\}^\{2n-2\}$. It is established that if a metrizable compact $X$ splits over $\mathbf \{R\}^n$, then $\dim X\le n$. An example of $n$-dimensional compact space which does not split over $\mathbf \{R\}^\{2n\}$ is given.},
author = {Tkachuk, Vladimir Vladimirovich},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {splittable; polyhedron; dimension; splittability; polyhedron},
language = {eng},
number = {3},
pages = {551-555},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A note on splittable spaces},
url = {http://eudml.org/doc/247369},
volume = {33},
year = {1992},
}

TY - JOUR
AU - Tkachuk, Vladimir Vladimirovich
TI - A note on splittable spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1992
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 33
IS - 3
SP - 551
EP - 555
AB - A space $X$ is splittable over a space $Y$ (or splits over $Y$) if for every $A\subset X$ there exists a continuous map $f:X\rightarrow Y$ with $f^{-1} f A=A$. We prove that any $n$-dimensional polyhedron splits over $\mathbf {R}^{2n}$ but not necessarily over $\mathbf {R}^{2n-2}$. It is established that if a metrizable compact $X$ splits over $\mathbf {R}^n$, then $\dim X\le n$. An example of $n$-dimensional compact space which does not split over $\mathbf {R}^{2n}$ is given.
LA - eng
KW - splittable; polyhedron; dimension; splittability; polyhedron
UR - http://eudml.org/doc/247369
ER -

References

top
  1. Arhangel'skii A.V., A general concept of splittability of a topological space (in Russian), in: Proceedings of the Fifth Tyraspol Symposium on General Topology and its Applications, Kishinev, Shtiintsa, 1985, 8-10. 
  2. Arhangel'skii A.V., Shakhmatov D.B., Splittable spaces and questions of functions approximations (in Russian), in: Proceedings of the Fifth Tyraspol Symposium on General Topology and its Applications, Kishinev, Shtiintsa, 1985, 10-11. 
  3. Arhangel'skii A.V., Shakhmatov D.B., On pointwise approximation of arbitrary functions by countable families of continuous functions (in Russian), Trudy Seminara I.G. Petrovskogo 13 (1988), 206-227. (1988) MR0961436
  4. Tkachuk V.V., Approximation of 𝐑 X with countable subsets of C p ( X ) and calibers of the space C p ( X ) , Comment. Math. Univ. Carolinae 27 (1986), 267-276. (1986) MR0857546
  5. Bregman Yu.H., Šapirovskii B.E., Šostak A.P., On partition of topological spaces, Časopis pro pěstování mat. 109 (1984), 27-53. (1984) MR0741207
  6. Mazurkiewicz S., Sur les problèmes κ et λ de Urysohn, Fund. Math. 10 (1927), 311-319. (1927) 
  7. Tkachuk V., Remainders over discrete spaces - some applications (in Russian), Vestnik MGU, Mat., Mech., no. 4, 1990, 18-21. MR1086601
  8. Malyhin V.I., β N is prime, Bull. Acad. Polon. Sci., Ser. Mat. 27 (1979), 295-297. (1979) Zbl0433.54015MR0552052
  9. Engelking R., General Topology, PWN, Warszawa, 1977. Zbl0684.54001MR0500780
  10. Skljarenko E.G., A theorem on maps, lowering dimension (in Russian), Bull. Acad. Polon. Sci., Ser. Mat. 10 (1962), 429-432. (1962) MR0149445

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.