A note on splittable spaces
Vladimir Vladimirovich Tkachuk
Commentationes Mathematicae Universitatis Carolinae (1992)
- Volume: 33, Issue: 3, page 551-555
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topTkachuk, Vladimir Vladimirovich. "A note on splittable spaces." Commentationes Mathematicae Universitatis Carolinae 33.3 (1992): 551-555. <http://eudml.org/doc/247369>.
@article{Tkachuk1992,
abstract = {A space $X$ is splittable over a space $Y$ (or splits over $Y$) if for every $A\subset X$ there exists a continuous map $f:X\rightarrow Y$ with $f^\{-1\} f A=A$. We prove that any $n$-dimensional polyhedron splits over $\mathbf \{R\}^\{2n\}$ but not necessarily over $\mathbf \{R\}^\{2n-2\}$. It is established that if a metrizable compact $X$ splits over $\mathbf \{R\}^n$, then $\dim X\le n$. An example of $n$-dimensional compact space which does not split over $\mathbf \{R\}^\{2n\}$ is given.},
author = {Tkachuk, Vladimir Vladimirovich},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {splittable; polyhedron; dimension; splittability; polyhedron},
language = {eng},
number = {3},
pages = {551-555},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A note on splittable spaces},
url = {http://eudml.org/doc/247369},
volume = {33},
year = {1992},
}
TY - JOUR
AU - Tkachuk, Vladimir Vladimirovich
TI - A note on splittable spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1992
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 33
IS - 3
SP - 551
EP - 555
AB - A space $X$ is splittable over a space $Y$ (or splits over $Y$) if for every $A\subset X$ there exists a continuous map $f:X\rightarrow Y$ with $f^{-1} f A=A$. We prove that any $n$-dimensional polyhedron splits over $\mathbf {R}^{2n}$ but not necessarily over $\mathbf {R}^{2n-2}$. It is established that if a metrizable compact $X$ splits over $\mathbf {R}^n$, then $\dim X\le n$. An example of $n$-dimensional compact space which does not split over $\mathbf {R}^{2n}$ is given.
LA - eng
KW - splittable; polyhedron; dimension; splittability; polyhedron
UR - http://eudml.org/doc/247369
ER -
References
top- Arhangel'skii A.V., A general concept of splittability of a topological space (in Russian), in: Proceedings of the Fifth Tyraspol Symposium on General Topology and its Applications, Kishinev, Shtiintsa, 1985, 8-10.
- Arhangel'skii A.V., Shakhmatov D.B., Splittable spaces and questions of functions approximations (in Russian), in: Proceedings of the Fifth Tyraspol Symposium on General Topology and its Applications, Kishinev, Shtiintsa, 1985, 10-11.
- Arhangel'skii A.V., Shakhmatov D.B., On pointwise approximation of arbitrary functions by countable families of continuous functions (in Russian), Trudy Seminara I.G. Petrovskogo 13 (1988), 206-227. (1988) MR0961436
- Tkachuk V.V., Approximation of with countable subsets of and calibers of the space , Comment. Math. Univ. Carolinae 27 (1986), 267-276. (1986) MR0857546
- Bregman Yu.H., Šapirovskii B.E., Šostak A.P., On partition of topological spaces, Časopis pro pěstování mat. 109 (1984), 27-53. (1984) MR0741207
- Mazurkiewicz S., Sur les problèmes et de Urysohn, Fund. Math. 10 (1927), 311-319. (1927)
- Tkachuk V., Remainders over discrete spaces - some applications (in Russian), Vestnik MGU, Mat., Mech., no. 4, 1990, 18-21. MR1086601
- Malyhin V.I., is prime, Bull. Acad. Polon. Sci., Ser. Mat. 27 (1979), 295-297. (1979) Zbl0433.54015MR0552052
- Engelking R., General Topology, PWN, Warszawa, 1977. Zbl0684.54001MR0500780
- Skljarenko E.G., A theorem on maps, lowering dimension (in Russian), Bull. Acad. Polon. Sci., Ser. Mat. 10 (1962), 429-432. (1962) MR0149445
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.