The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “More than a 0-point”

On spaces with the ideal convergence property

Jakub Jasinski, Ireneusz Recław (2008)

Colloquium Mathematicae

Similarity:

Let I ⊆ P(ω) be an ideal. We continue our investigation of the class of spaces with the I-ideal convergence property, denoted (I). We show that if I is an analytic, non-countably generated P-ideal then (I) ⊆ s₀. If in addition I is non-pathological and not isomorphic to I b , then (I) spaces have measure zero. We also present a characterization of the (I) spaces using clopen covers.

More on cardinal invariants of analytic P -ideals

Barnabás Farkas, Lajos Soukup (2009)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Given an ideal on ω let 𝔞 ( ) ( 𝔞 ¯ ( ) ) be minimum of the cardinalities of infinite (uncountable) maximal -almost disjoint subsets of [ ω ] ω . We show that 𝔞 ( h ) > ω if h is a summable ideal; but 𝔞 ( 𝒵 μ ) = ω for any tall density ideal 𝒵 μ including the density zero ideal 𝒵 . On the other hand, you have 𝔟 𝔞 ¯ ( ) for any analytic P -ideal , and 𝔞 ¯ ( 𝒵 μ ) 𝔞 for each density ideal 𝒵 μ . For each ideal on ω denote 𝔟 and 𝔡 the unbounding and dominating numbers of ω ω , where f g iff { n ω : f ( n ) > g ( n ) } . We show that 𝔟 = 𝔟 and 𝔡 = 𝔡 for each analytic P -ideal . Given a Borel...

Fixed-place ideals in commutative rings

Ali Rezaei Aliabad, Mehdi Badie (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let I be a semi-prime ideal. Then P Min ( I ) is called irredundant with respect to I if I P P Min ( I ) P . If I is the intersection of all irredundant ideals with respect to I , it is called a fixed-place ideal. If there are no irredundant ideals with respect to I , it is called an anti fixed-place ideal. We show that each semi-prime ideal has a unique representation as an intersection of a fixed-place ideal and an anti fixed-place ideal. We say the point p β X is a fixed-place point if O p ( X ) is a fixed-place ideal. In...

The ideal (a) is not G δ generated

Marta Frankowska, Andrzej Nowik (2011)

Colloquium Mathematicae

Similarity:

We prove that the ideal (a) defined by the density topology is not G δ generated. This answers a question of Z. Grande and E. Strońska.

C ( X ) can sometimes determine X without X being realcompact

Melvin Henriksen, Biswajit Mitra (2005)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

As usual C ( X ) will denote the ring of real-valued continuous functions on a Tychonoff space X . It is well-known that if X and Y are realcompact spaces such that C ( X ) and C ( Y ) are isomorphic, then X and Y are homeomorphic; that is C ( X ) X . The restriction to realcompact spaces stems from the fact that C ( X ) and C ( υ X ) are isomorphic, where υ X is the (Hewitt) realcompactification of X . In this note, a class of locally compact spaces X that includes properly the class of locally...