The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Another proof of Derriennic's reverse maximal inequality for the supremum of ergodic ratios”

Ergodic averages and free 2 actions

Zoltán Buczolich (1999)

Fundamenta Mathematicae

Similarity:

If the ergodic transformations S, T generate a free 2 action on a finite non-atomic measure space (X,S,µ) then for any c 1 , c 2 there exists a measurable function f on X for which ( N + 1 ) - 1 j = 0 N f ( S j x ) c 1 and ( N + 1 ) - 1 j = 0 N f ( T j x ) c 2 µ -almost everywhere as N → ∞. In the special case when S, T are rationally independent rotations of the circle this result answers a question of M. Laczkovich.

On ergodicity of some cylinder flows

Krzysztof Frączek (2000)

Fundamenta Mathematicae

Similarity:

We study ergodicity of cylinder flows of the form    T f : T × T × , T f ( x , y ) = ( x + α , y + f ( x ) ) , where f : T is a measurable cocycle with zero integral. We show a new class of smooth ergodic cocycles. Let k be a natural number and let f be a function such that D k f is piecewise absolutely continuous (but not continuous) with zero sum of jumps. We show that if the points of discontinuity of D k f have some good properties, then T f is ergodic. Moreover, there exists ε f > 0 such that if v : T is a function with zero integral such that D k v is of bounded...

Σ -products of paracompact Čech-scattered spaces

Hidenori Tanaka (2006)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper, we shall discuss Σ -products of paracompact Čech-scattered spaces and show the following: (1) Let Σ be a Σ -product of paracompact Čech-scattered spaces. If Σ has countable tightness, then it is collectionwise normal. (2) If Σ is a Σ -product of first countable, paracompact (subparacompact) Čech-scattered spaces, then it is shrinking (subshrinking).

A note on strange nonchaotic attractors

Gerhard Keller (1996)

Fundamenta Mathematicae

Similarity:

For a class of quasiperiodically forced time-discrete dynamical systems of two variables (θ,x) ∈ T 1 × + with nonpositive Lyapunov exponents we prove the existence of an attractor Γ̅ with the following properties:  1. Γ̅ is the closure of the graph of a function x = ϕ(θ). It attracts Lebesgue-a.e. starting point in T 1 × + . The set θ:ϕ(θ) ≠ 0 is meager but has full 1-dimensional Lebesgue measure.  2. The omega-limit of Lebesgue-a.e point in T 1 × + is Γ ̅ , but for a residual set of points in T 1 × + the omega...

On a discrete version of the antipodal theorem

Krzysztof Oleszkiewicz (1996)

Fundamenta Mathematicae

Similarity:

The classical theorem of Borsuk and Ulam [2] says that for any continuous mapping f : S k k there exists a point x S k such that f(-x) = f(x). In this note a discrete version of the antipodal theorem is proved in which S k is replaced by the set of vertices of a high-dimensional cube equipped with Hamming’s metric. In place of equality we obtain some optimal estimates of i n f x | | f ( x ) - f ( - x ) | | which were previously known (as far as the author knows) only for f linear (cf. [1]).

Ergodicity for piecewise smooth cocycles over toral rotations

Anzelm Iwanik (1998)

Fundamenta Mathematicae

Similarity:

Let α be an ergodic rotation of the d-torus 𝕋 d = d / d . For any piecewise smooth function f : 𝕋 d with sufficiently regular pieces the unitary operator Vh(x) = exp(2π if(x))h(x + α) acting on L 2 ( 𝕋 d ) is shown to have a continuous non-Dirichlet spectrum if the gradient of f has nonzero integral. In particular, the resulting skew product S f : 𝕋 d + 1 𝕋 d + 1 must be ergodic. If in addition α is sufficiently well approximated by rational vectors and f is represented by a linear function with noninteger coefficients then the spectrum...

An extension of a theorem of Marcinkiewicz and Zygmund on differentiability

S. Mukhopadhyay, S. Mitra (1996)

Fundamenta Mathematicae

Similarity:

Let f be a measurable function such that Δ k ( x , h ; f ) = O ( | h | λ ) at each point x of a set E, where k is a positive integer, λ > 0 and Δ k ( x , h ; f ) is the symmetric difference of f at x of order k. Marcinkiewicz and Zygmund [5] proved that if λ = k and if E is measurable then the Peano derivative f ( k ) exists a.e. on E. Here we prove that if λ > k-1 then the Peano derivative f ( [ λ ] ) exists a.e. on E and that the result is false if λ = k-1; it is further proved that if λ is any positive integer and if the approximate Peano...

Strongly meager sets and subsets of the plane

Janusz Pawlikowski (1998)

Fundamenta Mathematicae

Similarity:

Let X 2 w . Consider the class of all Borel F X × 2 w with null vertical sections F x , x ∈ X. We show that if for all such F and all null Z ⊆ X, x Z F x is null, then for all such F, x X F x 2 w . The theorem generalizes the fact that every Sierpiński set is strongly meager and was announced in [P].

Normal numbers and subsets of N with given densities

Haseo Ki, Tom Linton (1994)

Fundamenta Mathematicae

Similarity:

For X ⊆ [0,1], let D X denote the collection of subsets of ℕ whose densities lie in X. Given the exact location of X in the Borel or difference hierarchy, we exhibit the exact location of D X . For α ≥ 3, X is properly D ξ ( Π α 0 ) iff D X is properly D ξ ( Π 1 + α 0 ) . We also show that for every nonempty set X ⊆[0,1], D X is Π 3 0 -hard. For each nonempty Π 2 0 set X ⊆ [0,1], in particular for X = x, D X is Π 3 0 -complete. For each n ≥ 2, the collection of real numbers that are normal or simply normal to base n is Π 3 0 -complete. Moreover,...

Carathéodory balls and norm balls in H p , n = z n : z p < 1

Binyamin Schwarz, Uri Srebro (1996)

Banach Center Publications

Similarity:

It is shown that for n ≥ 2 and p > 2, where p is not an even integer, the only balls in the Carathéodory distance on H p , n = z n : z p < 1 which are balls with respect to the complex l p norm in n are those centered at the origin.

The homotopy groups of the L2 -localization of a certain type one finite complex at the prime 3

Yoshitaka Nakazawa, Katsumi Shimomura (1997)

Fundamenta Mathematicae

Similarity:

For the Brown-Peterson spectrum BP at the prime 3, v 2 denotes Hazewinkel’s second polynomial generator of B P * . Let L 2 denote the Bousfield localization functor with respect to v 2 - 1 B P . A typical example of type one finite spectra is the mod 3 Moore spectrum M. In this paper, we determine the homotopy groups π * ( L 2 M X ) for the 8 skeleton X of BP.