The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Weak orderability of some spaces which admit a weak selection”

Lonely points revisited

Jonathan L. Verner (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In our previous paper, we introduced the notion of a lonely point, due to P. Simon. A point p X is lonely if it is a limit point of a countable dense-in-itself set, it is not a limit point of a countable discrete set and all countable sets whose limit point it is form a filter. We use the space 𝒢 ω from a paper of A. Dow, A.V. Gubbi and A. Szymański [Rigid Stone spaces within ZFC, Proc. Amer. Math. Soc. 102 (1988), no. 3, 745–748] to construct lonely points in ω * . This answers the question...

The regular topology on C ( X )

Wolf Iberkleid, Ramiro Lafuente-Rodriguez, Warren Wm. McGovern (2011)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Hewitt [Rings of real-valued continuous functions. I., Trans. Amer. Math. Soc. 64 (1948), 45–99] defined the m -topology on C ( X ) , denoted C m ( X ) , and demonstrated that certain topological properties of X could be characterized by certain topological properties of C m ( X ) . For example, he showed that X is pseudocompact if and only if C m ( X ) is a metrizable space; in this case the m -topology is precisely the topology of uniform convergence. What is interesting with regards to the m -topology is that it is...

Weak selections and weak orderability of function spaces

Valentin Gutev (2010)

Czechoslovak Mathematical Journal

Similarity:

It is proved that for a zero-dimensional space X , the function space C p ( X , 2 ) has a Vietoris continuous selection for its hyperspace of at most 2-point sets if and only if X is separable. This provides the complete affirmative solution to a question posed by Tamariz-Mascarúa. It is also obtained that for a strongly zero-dimensional metrizable space E , the function space C p ( X , E ) is weakly orderable if and only if its hyperspace of at most 2-point sets has a Vietoris continuous selection. This provides...