The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A characterization of polynomially Riesz strongly continuous semigroups”

Geometry of the spectral semidistance in Banach algebras

Gareth Braatvedt, Rudi Brits (2014)

Czechoslovak Mathematical Journal

Similarity:

Let A be a unital Banach algebra over , and suppose that the nonzero spectral values of a and b A are discrete sets which cluster at 0 , if anywhere. We develop a plane geometric formula for the spectral semidistance of a and b which depends on the two spectra, and the orthogonality relationships between the corresponding sets of Riesz projections associated with the nonzero spectral values. Extending a result of Brits and Raubenheimer, we further show that a and b are quasinilpotent equivalent...

Riesz spaces of order bounded disjointness preserving operators

Fethi Ben Amor (2007)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let L , M be Archimedean Riesz spaces and b ( L , M ) be the ordered vector space of all order bounded operators from L into M . We define a Lamperti Riesz subspace of b ( L , M ) to be an ordered vector subspace of b ( L , M ) such that the elements of preserve disjointness and any pair of operators in has a supremum in b ( L , M ) that belongs to . It turns out that the lattice operations in any Lamperti Riesz subspace of b ( L , M ) are given pointwise, which leads to a generalization of the classic Radon-Nikod’ym theorem...

Sturm-Liouville systems are Riesz-spectral systems

Cédric Delattre, Denis Dochain, Joseph Winkin (2003)

International Journal of Applied Mathematics and Computer Science

Similarity:

The class of Sturm-Liouville systems is defined. It appears to be a subclass of Riesz-spectral systems, since it is shown that the negative of a Sturm-Liouville operator is a Riesz-spectral operator on L^2(a,b) and the infinitesimal generator of a C_0-semigroup of bounded linear operators.