Displaying similar documents to “Optimal design in small amplitude homogenization”

On an optimal shape design problem in conduction

José Carlos Bellido (2006)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper we analyze a typical shape optimization problem in two-dimensional conductivity. We study relaxation for this problem itself. We also analyze the question of the approximation of this problem by the two-phase optimal design problems obtained when we fill out the holes that we want to design in the original problem by a very poor conductor, that we make to converge to zero.

Optimal design of turbines with an attached mass

Boris P. Belinskiy, C. Maeve McCarthy, Terry J. Walters (2003)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We minimize, with respect to shape, the moment of inertia of a turbine having the given lowest eigenfrequency of the torsional oscillations. The necessary conditions of optimality in conjunction with certain physical parameters admit a unique optimal design.

Relaxation of an optimal design problem in fracture mechanic: the anti-plane case

Arnaud Münch, Pablo Pedregal (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In the framework of the linear fracture theory, a commonly-used tool to describe the smooth evolution of a crack embedded in a bounded domain Ω is the so-called energy release rate defined as the variation of the mechanical energy with respect to the crack dimension. Precisely, the well-known Griffith's criterion postulates the evolution of the crack if this rate reaches a critical value. In this work, in the anti-plane scalar case, we consider the shape design problem which consists...

Vector variational problems and applications to optimal design

Pablo Pedregal (2005)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We examine how the use of typical techniques from non-convex vector variational problems can help in understanding optimal design problems in conductivity. After describing the main ideas of the underlying analysis and providing some standard material in an attempt to make the exposition self-contained, we show how those ideas apply to a typical optimal desing problem with two different conducting materials. Then we examine the equivalent relaxed formulation to end up with a new problem...