Displaying similar documents to “A generalization of a generic theorem in the theory of cardinal invariants of topological spaces”

Linear subspace of Rl without dense totally disconnected subsets

K. Ciesielski (1993)

Fundamenta Mathematicae

Similarity:

In [1] the author showed that if there is a cardinal κ such that 2 κ = κ + then there exists a completely regular space without dense 0-dimensional subspaces. This was a solution of a problem of Arkhangel’skiĭ. Recently Arkhangel’skiĭ asked the author whether one can generalize this result by constructing a completely regular space without dense totally disconnected subspaces, and whether such a space can have a structure of a linear space. The purpose of this paper is to show that indeed such...

Embedding of the ordinal segment [ 0 , ω 1 ] into continuous images of Valdivia compacta

Ondřej F. K. Kalenda (1999)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove in particular that a continuous image of a Valdivia compact space is Corson provided it contains no homeomorphic copy of the ordinal segment [ 0 , ω 1 ] . This generalizes a result of R. Deville and G. Godefroy who proved it for Valdivia compact spaces. We give also a refinement of their result which yields a pointwise version of retractions on a Valdivia compact space.

Forcing countable networks for spaces satisfying R ( X ω ) = ω

István Juhász, Lajos Soukup, Zoltán Szentmiklóssy (1996)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show that all finite powers of a Hausdorff space X do not contain uncountable weakly separated subspaces iff there is a c.c.c poset P such that in V P X is a countable union of 0 -dimensional subspaces of countable weight. We also show that this theorem is sharp in two different senses: (i) we cannot get rid of using generic extensions, (ii) we have to consider all finite powers of X .

Inessentiality with respect to subspaces

Michael Levin (1995)

Fundamenta Mathematicae

Similarity:

Let X be a compactum and let A = ( A i , B i ) : i = 1 , 2 , . . . be a countable family of pairs of disjoint subsets of X. Then A is said to be essential on Y ⊂ X if for every closed F i separating A i and B i the intersection ( F i ) Y is not empty. So A is inessential on Y if there exist closed F i separating A i and B i such that F i does not intersect Y. Properties of inessentiality are studied and applied to prove:  Theorem. For every countable family of pairs of disjoint open subsets of a compactum X there exists an open set G ∩ X on...

On the cardinality and weight spectra of compact spaces, II

Istvan Juhász, Saharon Shelah (1998)

Fundamenta Mathematicae

Similarity:

Let B(κ,λ) be the subalgebra of P(κ) generated by [ κ ] λ . It is shown that if B is any homomorphic image of B(κ,λ) then either | B | < 2 λ or | B | = | B | λ ; moreover, if X is the Stone space of B then either | X | 2 2 λ or | X | = | B | = | B | λ . This implies the existence of 0-dimensional compact T 2 spaces whose cardinality and weight spectra omit lots of singular cardinals of “small” cofinality.