Displaying similar documents to “On loops that are abelian groups over the nucleus and Buchsteiner loops”

A-loops close to code loops are groups

Aleš Drápal (2000)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let Q be a diassociative A-loop which is centrally nilpotent of class 2 and which is not a group. Then the factor over the centre cannot be an elementary abelian 2-group.

On multiplication groups of left conjugacy closed loops

Aleš Drápal (2004)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A loop Q is said to be left conjugacy closed (LCC) if the set { L x ; x Q } is closed under conjugation. Let Q be such a loop, let and be the left and right multiplication groups of Q , respectively, and let Inn Q be its inner mapping group. Then there exists a homomorphism Inn Q determined by L x R x - 1 L x , and the orbits of [ , ] coincide with the cosets of A ( Q ) , the associator subloop of Q . All LCC loops of prime order are abelian groups.

A class of Bol loops with a subgroup of index two

Petr Vojtěchovský (2004)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let G be a finite group and C 2 the cyclic group of order 2 . Consider the 8 multiplicative operations ( x , y ) ( x i y j ) k , where i , j , k { - 1 , 1 } . Define a new multiplication on G × C 2 by assigning one of the above 8 multiplications to each quarter ( G × { i } ) × ( G × { j } ) , for i , j C 2 . We describe all situations in which the resulting quasigroup is a Bol loop. This paper also corrects an error in P. Vojtěchovsk’y: On the uniqueness of loops M ( G , 2 ) .