The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On upper traceable numbers of graphs”

Measures of traceability in graphs

Varaporn Saenpholphat, Futaba Okamoto, Ping Zhang (2006)

Mathematica Bohemica

Similarity:

For a connected graph G of order n 3 and an ordering s v 1 , v 2 , , v n of the vertices of G , d ( s ) = i = 1 n - 1 d ( v i , v i + 1 ) , where d ( v i , v i + 1 ) is the distance between v i and v i + 1 . The traceable number t ( G ) of G is defined by t ( G ) = min d ( s ) , where the minimum is taken over all sequences s of the elements of V ( G ) . It is shown that if G is a nontrivial connected graph of order n such that l is the length of a longest path in G and p is the maximum size of a spanning linear forest in G , then 2 n - 2 - p t ( G ) 2 n - 2 - l and both these bounds are sharp. We establish a formula for the traceable...

The upper traceable number of a graph

Futaba Okamoto, Ping Zhang, Varaporn Saenpholphat (2008)

Czechoslovak Mathematical Journal

Similarity:

For a nontrivial connected graph G of order n and a linear ordering s v 1 , v 2 , ... , v n of vertices of G , define d ( s ) = i = 1 n - 1 d ( v i , v i + 1 ) . The traceable number t ( G ) of a graph G is t ( G ) = min { d ( s ) } and the upper traceable number t + ( G ) of G is t + ( G ) = max { d ( s ) } , where the minimum and maximum are taken over all linear orderings s of vertices of G . We study upper traceable numbers of several classes of graphs and the relationship between the traceable number and upper traceable number of a graph. All connected graphs G for which t + ( G ) - t ( G ) = 1 are characterized and a formula for...

Minimum degree, leaf number and traceability

Simon Mukwembi (2013)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite connected graph with minimum degree δ . The leaf number L ( G ) of G is defined as the maximum number of leaf vertices contained in a spanning tree of G . We prove that if δ 1 2 ( L ( G ) + 1 ) , then G is 2-connected. Further, we deduce, for graphs of girth greater than 4, that if δ 1 2 ( L ( G ) + 1 ) , then G contains a spanning path. This provides a partial solution to a conjecture of the computer program Graffiti.pc [DeLaVi na and Waller, Spanning trees with many leaves and average distance, Electron. J. Combin....