Displaying similar documents to “Metrization of connections with regular curvature”

Metrization problem for linear connections and holonomy algebras

Alena Vanžurová (2008)

Archivum Mathematicum

Similarity:

We contribute to the following: given a manifold endowed with a linear connection, decide whether the connection arises from some metric tensor. Compatibility condition for a metric is given by a system of ordinary differential equations. Our aim is to emphasize the role of holonomy algebra in comparison with certain more classical approaches, and propose a possible application in the Calculus of Variations (for a particular type of second order system of ODE’s, which define geodesics...

g -natural metrics of constant curvature on unit tangent sphere bundles

M. T. K. Abbassi, Giovanni Calvaruso (2012)

Archivum Mathematicum

Similarity:

We completely classify Riemannian g -natural metrics of constant sectional curvature on the unit tangent sphere bundle T 1 M of a Riemannian manifold ( M , g ) . Since the base manifold M turns out to be necessarily two-dimensional, weaker curvature conditions are also investigated for a Riemannian g -natural metric on the unit tangent sphere bundle of a Riemannian surface.