The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Matchings and the variance of Lipschitz functions”

Large deviations for independent random variables – Application to Erdös-Renyi’s functional law of large numbers

Jamal Najim (2005)

ESAIM: Probability and Statistics

Similarity:

A Large Deviation Principle (LDP) is proved for the family 1 n 1 n 𝐟 ( x i n ) · Z i n where the deterministic probability measure 1 n 1 n δ x i n converges weakly to a probability measure R and ( Z i n ) i are d -valued independent random variables whose distribution depends on x i n and satisfies the following exponential moments condition: sup i , n 𝔼 e α * | Z i n | < + forsome 0 < α * < + . In this context, the identification of the rate function is non-trivial due to the absence of equidistribution. We rely on fine convex analysis to address this issue. Among...

A characterization of gradient Young-concentration measures generated by solutions of Dirichlet-type problems with large sources

Gisella Croce, Catherine Lacour, Gérard Michaille (2009)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We show how to capture the gradient concentration of the solutions of Dirichlet-type problems subjected to large sources of order 1 ε concentrated on an ε -neighborhood of a hypersurface of the domain. To this end we define the gradient Young-concentration measures generated by sequences of finite energy and establish a very simple characterization of these measures.