Displaying similar documents to “ On a low Mach nuclear core model ”

Study of a low Mach nuclear core model for two-phase flows with phase transition I: stiffened gas law

Manuel Bernard, Stéphane Dellacherie, Gloria Faccanoni, Bérénice Grec, Yohan Penel (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this paper, we are interested in modelling the flow of the coolant (water) in a nuclear reactor core. To this end, we use a monodimensional low Mach number model supplemented with the stiffened gas law. We take into account potential phase transitions by a single equation of state which describes both pure and mixture phases. In some particular cases, we give analytical steady and/or unsteady solutions which provide qualitative information about the flow. In the second part of the...

Simplified models of quantum fluids in nuclear physics

Bernard Ducomet (2001)

Mathematica Bohemica

Similarity:

We revisit a hydrodynamical model, derived by Wong from Time-Dependent-Hartree-Fock approximation, to obtain a simplified version of nuclear matter. We obtain well-posed problems of Navier-Stokes-Poisson-Yukawa type, with some unusual features due to quantum aspects, for which one can prove local existence. In the case of a one-dimensional nuclear slab, we can prove a result of global existence, by using a formal analogy with some model of nonlinear "viscoelastic" rods.

Mathematical and Numerical Analysis of an Alternative Well-Posed Two-Layer Turbulence Model

Bijan Mohammadi, Guillaume Puigt (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In this article, we wish to investigate the behavior of a two-layer turbulence model from the mathematical point of view, as this model is useful for the near-wall treatment in numerical simulations. First, we explain the difficulties inherent in the model. Then, we present a new variable that enables the mathematical study. Due to a problem of definition of the turbulent viscosity on the wall boundary, we consider an alternative version of the original equation. We show that some...