Displaying similar documents to “Symbolic dynamics and Lyapunov exponents for Lozi maps”

Turbulent maps and their ω-limit sets

F. Balibrea, C. La Paz (1997)

Annales Polonici Mathematici

Similarity:

One-dimensional turbulent maps can be characterized via their ω-limit sets [1]. We give a direct proof of this characterization and get stronger results, which allows us to obtain some other results on ω-limit sets, which previously were difficult to prove.

The Bernoulli shift as a basic chaotic dynamical system

Kučera, Václav

Similarity:

We give a brief introduction to the Bernoulli shift map as a basic chaotic dynamical system. We give several examples where the iterates of a~mapping can be understood using the Bernoulli shift. Namely, the iteration of real interval maps and iteration of quadratic functions in the complex plain.

On the topological dynamics and phase-locking renormalization of Lorenz-like maps

Lluis Alsedà, Antonio Falcó (2003)

Annales de l’institut Fourier

Similarity:

The aim of this paper is twofold. First we give a characterization of the set of kneading invariants for the class of Lorenz–like maps considered as a map of the circle of degree one with one discontinuity. In a second step we will consider the subclass of the Lorenz– like maps generated by the class of Lorenz maps in the interval. For this class of maps we give a characterization of the set of renormalizable maps with rotation interval degenerate to a rational number, that is, of phase–locking...

Shadowing and expansivity in subspaces

Andrew D. Barwell, Chris Good, Piotr Oprocha (2012)

Fundamenta Mathematicae

Similarity:

We address various notions of shadowing and expansivity for continuous maps restricted to a proper subset of their domain. We prove new equivalences of shadowing and expansive properties, we demonstrate under what conditions certain expanding maps have shadowing, and generalize some known results in this area. We also investigate the impact of our theory on maps of the interval.