On the topological dynamics and phase-locking renormalization of Lorenz-like maps

Lluis Alsedà[1]; Antonio Falcó[2]

  • [1] Universitat Politècnica de Catalunya, Departament de Matemàtica Aplicada I, Diagonal 647, 08028 Barcelona (Espagne)
  • [2] Universidad Cardenal Herrera-CEU, Facultad de Ciencias Sociales Jurídicas, Departamento de Economía y Empresa, Campus de Elche, Comissari 1, 03203 Elche-Elx (Espagne)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 3, page 859-883
  • ISSN: 0373-0956

Abstract

top
The aim of this paper is twofold. First we give a characterization of the set of kneading invariants for the class of Lorenz–like maps considered as a map of the circle of degree one with one discontinuity. In a second step we will consider the subclass of the Lorenz– like maps generated by the class of Lorenz maps in the interval. For this class of maps we give a characterization of the set of renormalizable maps with rotation interval degenerate to a rational number, that is, of phase–locking renormalizable maps. This characterization is given by showing the equivalence between the geometric renormalization procedure and the combinatorial one (which is expressed in terms of an * –like product defined in the set of kneading invariants). Finally, we will prove the existence, at a combinatorial level, of periodic points of all periods for the renormalization map.

How to cite

top

Alsedà, Lluis, and Falcó, Antonio. "On the topological dynamics and phase-locking renormalization of Lorenz-like maps." Annales de l’institut Fourier 53.3 (2003): 859-883. <http://eudml.org/doc/116056>.

@article{Alsedà2003,
abstract = {The aim of this paper is twofold. First we give a characterization of the set of kneading invariants for the class of Lorenz–like maps considered as a map of the circle of degree one with one discontinuity. In a second step we will consider the subclass of the Lorenz– like maps generated by the class of Lorenz maps in the interval. For this class of maps we give a characterization of the set of renormalizable maps with rotation interval degenerate to a rational number, that is, of phase–locking renormalizable maps. This characterization is given by showing the equivalence between the geometric renormalization procedure and the combinatorial one (which is expressed in terms of an $*$–like product defined in the set of kneading invariants). Finally, we will prove the existence, at a combinatorial level, of periodic points of all periods for the renormalization map.},
affiliation = {Universitat Politècnica de Catalunya, Departament de Matemàtica Aplicada I, Diagonal 647, 08028 Barcelona (Espagne); Universidad Cardenal Herrera-CEU, Facultad de Ciencias Sociales Jurídicas, Departamento de Economía y Empresa, Campus de Elche, Comissari 1, 03203 Elche-Elx (Espagne)},
author = {Alsedà, Lluis, Falcó, Antonio},
journal = {Annales de l’institut Fourier},
keywords = {Lorenz maps; circle maps; kneading theory; renormalizable maps; periodic points},
language = {eng},
number = {3},
pages = {859-883},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the topological dynamics and phase-locking renormalization of Lorenz-like maps},
url = {http://eudml.org/doc/116056},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Alsedà, Lluis
AU - Falcó, Antonio
TI - On the topological dynamics and phase-locking renormalization of Lorenz-like maps
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 3
SP - 859
EP - 883
AB - The aim of this paper is twofold. First we give a characterization of the set of kneading invariants for the class of Lorenz–like maps considered as a map of the circle of degree one with one discontinuity. In a second step we will consider the subclass of the Lorenz– like maps generated by the class of Lorenz maps in the interval. For this class of maps we give a characterization of the set of renormalizable maps with rotation interval degenerate to a rational number, that is, of phase–locking renormalizable maps. This characterization is given by showing the equivalence between the geometric renormalization procedure and the combinatorial one (which is expressed in terms of an $*$–like product defined in the set of kneading invariants). Finally, we will prove the existence, at a combinatorial level, of periodic points of all periods for the renormalization map.
LA - eng
KW - Lorenz maps; circle maps; kneading theory; renormalizable maps; periodic points
UR - http://eudml.org/doc/116056
ER -

References

top
  1. Ll. Alsedà, A. Falcó, A characterization of the kneading pair for bimodal degree one circle maps, Ann. Inst. Fourier 47 (1997), 273-304 Zbl0861.58014MR1437186
  2. Ll. Alsedà, J. Llibre, M. Misiurewicz, Combinatorial dynamics and entropy in dimension one, 5 (1993), World Scientific, Singapore Zbl0843.58034MR1255515
  3. Ll. Alsedà, J. Llibre, M. Misiurewicz, Ch. Tresser, Periods and entropy for Lorentz-like maps, Ann. Inst. Fourier 39 (1989), 929-952 Zbl0678.34047MR1036338
  4. Ll. Alsedà, F. Mañosas, Kneading theory and rotation interval for a class of circle maps of degree one, Nonlinearity 3 (1990), 413-452 Zbl0735.54026MR1054582
  5. Ll. Alsedà, F. Mañosas, Kneading theory for a family of circle maps with one discontinuity, Acta Math. Univ. Comeniae LXV (1996), 11-22 Zbl0863.34046MR1422291
  6. P. Collet, J.P. Eckmann, Iterated maps on the interval as dynamical systems, (1980), Birkhäuser Zbl0458.58002MR613981
  7. A. Falcó, Bifurcations and symbolic dynamics for bimodal degree one circle maps: The Arnol'd tongues and the Devil's staircase, (1995) 
  8. P. Glendinning, Topological conjugation of Lorenz maps by β -transformations, Math. Proc. Camb. Phil. Soc. 107 (1990), 401-413 Zbl0705.58035MR1027793
  9. P. Glendinning, C. Sparrow, Prime and renormalisable kneading invariants and the dynamics of expanding Lorenz maps, Physica D 62 (1993), 22-50 Zbl0783.58046MR1207415
  10. J. Gukenheimer, A strange, strange attractor. The Hopf bifurcations and its applications, 19 (1976), Springer-Verlag 
  11. J. Gukenheimer, R.F. Williams, Structural stability of Lorenz attractors, Publ. Math. IHES 50 (1979), 307-320 Zbl0436.58018
  12. J.H. Hubbard, C. Sparrow, The Classification of Topologically Expansive Lorenz Maps, Comm. Pure Appl. Math. XLIII (1990), 431-443 Zbl0714.58041MR1047331
  13. E.N. Lorenz, Deterministic non-periodic flow, J. Atmos. Sci. 20 (1963), 130-141 
  14. M. Martens, The periodic points of renormalization, Ann. of Math. 147 (1998), 543-584 Zbl0936.37017MR1637651
  15. M. Martens, W. de Melo, Universal models for Lorenz maps, (1997) Zbl1108.37300
  16. J. Milnor, P. Thurston, On iterated maps on the interval I, II, Dynamical Systems 1342 (1988), Springer Zbl0664.58015
  17. M. Misiurewicz, Rotation intervals for a class of maps of the real line into itself, Ergod. Th. & Dynam. Sys. 6 (1986), 117-132 Zbl0615.54030MR837979
  18. C.A. Morales, E.R. Pujals, Singular strange attractors on the boundary of Morse-Smale systems, Ann. Sci. École Norm. Sup. 30 (1997), 693-717 Zbl0911.58022MR1476293
  19. H. Poincaré, Sur les courbes définies par les équations différentielles, Œuvres complètes, vol. 1 (1952), 137-158, Gauthiers-Villars, Paris 
  20. F. Rhodes, C.L. Thompson, Rotation numbers for monotone functions on the circle, J. London Math. Soc. 34 (1986), 360-368 Zbl0623.58008MR856518
  21. C.T. Sparrow, The Lorenz equations: Bifurcations, chaos and strange attractors, 41 (1982), Springer-Verlag Zbl0504.58001MR681294
  22. R.F. Williams, The structure of Lorenz attractors, Publ. Math. IHES 50 (1979), 321-347 Zbl0484.58021MR556583

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.