On the topological dynamics and phase-locking renormalization of Lorenz-like maps
Lluis Alsedà[1]; Antonio Falcó[2]
- [1] Universitat Politècnica de Catalunya, Departament de Matemàtica Aplicada I, Diagonal 647, 08028 Barcelona (Espagne)
- [2] Universidad Cardenal Herrera-CEU, Facultad de Ciencias Sociales Jurídicas, Departamento de Economía y Empresa, Campus de Elche, Comissari 1, 03203 Elche-Elx (Espagne)
Annales de l’institut Fourier (2003)
- Volume: 53, Issue: 3, page 859-883
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAlsedà, Lluis, and Falcó, Antonio. "On the topological dynamics and phase-locking renormalization of Lorenz-like maps." Annales de l’institut Fourier 53.3 (2003): 859-883. <http://eudml.org/doc/116056>.
@article{Alsedà2003,
abstract = {The aim of this paper is twofold. First we give a characterization of the set of kneading
invariants for the class of Lorenz–like maps considered as a map of the circle of degree
one with one discontinuity. In a second step we will consider the subclass of the Lorenz–
like maps generated by the class of Lorenz maps in the interval. For this class of maps
we give a characterization of the set of renormalizable maps with rotation interval
degenerate to a rational number, that is, of phase–locking renormalizable maps. This
characterization is given by showing the equivalence between the geometric
renormalization procedure and the combinatorial one (which is expressed in terms of an
$*$–like product defined in the set of kneading invariants). Finally, we will prove the
existence, at a combinatorial level, of periodic points of all periods for the
renormalization map.},
affiliation = {Universitat Politècnica de Catalunya, Departament de Matemàtica Aplicada I, Diagonal 647, 08028 Barcelona (Espagne); Universidad Cardenal Herrera-CEU, Facultad de Ciencias Sociales Jurídicas, Departamento de Economía y Empresa, Campus de Elche, Comissari 1, 03203 Elche-Elx (Espagne)},
author = {Alsedà, Lluis, Falcó, Antonio},
journal = {Annales de l’institut Fourier},
keywords = {Lorenz maps; circle maps; kneading theory; renormalizable maps; periodic points},
language = {eng},
number = {3},
pages = {859-883},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the topological dynamics and phase-locking renormalization of Lorenz-like maps},
url = {http://eudml.org/doc/116056},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Alsedà, Lluis
AU - Falcó, Antonio
TI - On the topological dynamics and phase-locking renormalization of Lorenz-like maps
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 3
SP - 859
EP - 883
AB - The aim of this paper is twofold. First we give a characterization of the set of kneading
invariants for the class of Lorenz–like maps considered as a map of the circle of degree
one with one discontinuity. In a second step we will consider the subclass of the Lorenz–
like maps generated by the class of Lorenz maps in the interval. For this class of maps
we give a characterization of the set of renormalizable maps with rotation interval
degenerate to a rational number, that is, of phase–locking renormalizable maps. This
characterization is given by showing the equivalence between the geometric
renormalization procedure and the combinatorial one (which is expressed in terms of an
$*$–like product defined in the set of kneading invariants). Finally, we will prove the
existence, at a combinatorial level, of periodic points of all periods for the
renormalization map.
LA - eng
KW - Lorenz maps; circle maps; kneading theory; renormalizable maps; periodic points
UR - http://eudml.org/doc/116056
ER -
References
top- Ll. Alsedà, A. Falcó, A characterization of the kneading pair for bimodal degree one circle maps, Ann. Inst. Fourier 47 (1997), 273-304 Zbl0861.58014MR1437186
- Ll. Alsedà, J. Llibre, M. Misiurewicz, Combinatorial dynamics and entropy in dimension one, 5 (1993), World Scientific, Singapore Zbl0843.58034MR1255515
- Ll. Alsedà, J. Llibre, M. Misiurewicz, Ch. Tresser, Periods and entropy for Lorentz-like maps, Ann. Inst. Fourier 39 (1989), 929-952 Zbl0678.34047MR1036338
- Ll. Alsedà, F. Mañosas, Kneading theory and rotation interval for a class of circle maps of degree one, Nonlinearity 3 (1990), 413-452 Zbl0735.54026MR1054582
- Ll. Alsedà, F. Mañosas, Kneading theory for a family of circle maps with one discontinuity, Acta Math. Univ. Comeniae LXV (1996), 11-22 Zbl0863.34046MR1422291
- P. Collet, J.P. Eckmann, Iterated maps on the interval as dynamical systems, (1980), Birkhäuser Zbl0458.58002MR613981
- A. Falcó, Bifurcations and symbolic dynamics for bimodal degree one circle maps: The Arnol'd tongues and the Devil's staircase, (1995)
- P. Glendinning, Topological conjugation of Lorenz maps by -transformations, Math. Proc. Camb. Phil. Soc. 107 (1990), 401-413 Zbl0705.58035MR1027793
- P. Glendinning, C. Sparrow, Prime and renormalisable kneading invariants and the dynamics of expanding Lorenz maps, Physica D 62 (1993), 22-50 Zbl0783.58046MR1207415
- J. Gukenheimer, A strange, strange attractor. The Hopf bifurcations and its applications, 19 (1976), Springer-Verlag
- J. Gukenheimer, R.F. Williams, Structural stability of Lorenz attractors, Publ. Math. IHES 50 (1979), 307-320 Zbl0436.58018
- J.H. Hubbard, C. Sparrow, The Classification of Topologically Expansive Lorenz Maps, Comm. Pure Appl. Math. XLIII (1990), 431-443 Zbl0714.58041MR1047331
- E.N. Lorenz, Deterministic non-periodic flow, J. Atmos. Sci. 20 (1963), 130-141
- M. Martens, The periodic points of renormalization, Ann. of Math. 147 (1998), 543-584 Zbl0936.37017MR1637651
- M. Martens, W. de Melo, Universal models for Lorenz maps, (1997) Zbl1108.37300
- J. Milnor, P. Thurston, On iterated maps on the interval I, II, Dynamical Systems 1342 (1988), Springer Zbl0664.58015
- M. Misiurewicz, Rotation intervals for a class of maps of the real line into itself, Ergod. Th. & Dynam. Sys. 6 (1986), 117-132 Zbl0615.54030MR837979
- C.A. Morales, E.R. Pujals, Singular strange attractors on the boundary of Morse-Smale systems, Ann. Sci. École Norm. Sup. 30 (1997), 693-717 Zbl0911.58022MR1476293
- H. Poincaré, Sur les courbes définies par les équations différentielles, Œuvres complètes, vol. 1 (1952), 137-158, Gauthiers-Villars, Paris
- F. Rhodes, C.L. Thompson, Rotation numbers for monotone functions on the circle, J. London Math. Soc. 34 (1986), 360-368 Zbl0623.58008MR856518
- C.T. Sparrow, The Lorenz equations: Bifurcations, chaos and strange attractors, 41 (1982), Springer-Verlag Zbl0504.58001MR681294
- R.F. Williams, The structure of Lorenz attractors, Publ. Math. IHES 50 (1979), 321-347 Zbl0484.58021MR556583
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.