Displaying similar documents to “ Mucus dynamics subject to air and wall motion*”

Mathematical and numerical modeling of early atherosclerotic lesions

Vincent Calvez, Jean Gabriel Houot, Nicolas Meunier, Annie Raoult, Gabriela Rusnakova (2010)

ESAIM: Proceedings

Similarity:

This article is devoted to the construction of a mathematical model describing the early formation of atherosclerotic lesions. The early stage of atherosclerosis is an inflammatory process that starts with the penetration of low density lipoproteins in the intima and with their oxidation. This phenomenon is closely linked to the local blood flow dynamics. Extending a previous work [5] that was mainly restricted to a one-dimensional setting,...

Hybrid finite volume scheme for a two-phase flow in heterogeneous porous media

Konstantin Brenner (2012)

ESAIM: Proceedings

Similarity:

We propose a finite volume method on general meshes for the numerical simulation of an incompressible and immiscible two-phase flow in porous media. We consider the case that can be written as a coupled system involving a degenerate parabolic convection-diffusion equation for the saturation together with a uniformly elliptic equation for the global pressure. The numerical scheme, which is implicit in time, allows computations in the case ...

High-order WENO scheme for polymerization-type equations

Pierre Gabriel, Léon Matar Tine (2010)

ESAIM: Proceedings

Similarity:

Polymerization of proteins is a biochemical process involved in different diseases. Mathematically, it is generally modeled by aggregation-fragmentation-type equations. In this paper we consider a general polymerization model and propose a high-order numerical scheme to investigate the behavior of the solution. An important property of the equation is the mass conservation. The WENO scheme is built to preserve the total mass of proteins ...