The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “ Stabilité sous condition CFL non linéaire ”

Limit theorems for measure-valued processes of the level-exceedance type

Andriy Yurachkivsky (2012)

ESAIM: Probability and Statistics

Similarity:

Let, for each , (, ۔) be a random measure on the Borel -algebra in ℝ such that E(, ℝ) < ∞ for all and let ψ ^ (, ۔) be its characteristic function. We call the function ψ ^ ( ,…, ; ,…, ) = 𝖤 j = 1 l ψ ^ ( t j , z j ) of arguments ℕ, , … , , ℝ the of the measure-valued random function (MVRF) (۔, ۔). A...

A simple proof of the characterization of functions of low Aviles Giga energy on a ball regularity

Andrew Lorent (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The Aviles Giga functional is a well known second order functional that forms a model for blistering and in a certain regime liquid crystals, a related functional models thin magnetized films. Given Lipschitz domain  ⊂ ℝ the functional is I ϵ ( u ) = 1 2 Ω ϵ -1 1 Du 2 2 + ϵ D 2 u 2 d z where belongs to the subset of functions in W 0 2 , 2 ( Ω ) whose gradient (in the sense of trace) satisfies ()·  = 1 where is...

On the helix equation

Mohamed Hmissi, Imene Ben Salah, Hajer Taouil (2012)

ESAIM: Proceedings

Similarity:

This paper is devoted to the helices processes, i.e. the solutions H : ℝ × Ω → ℝ d , (t, ω) ↦ H(t, ω) of the helix equation H ( 0 ) = 0 ; H ( s + t,ω ) = H ( s, Φ ( t,ω ) ) + H ( t,ω ) where Φ : ℝ × Ω → Ω, (t, ω) ↦ Φ(t, ω) is a dynamical...