Displaying similar documents to “On holomorphically projective mappings of e -Kähler manifolds”

On holomorphically projective mappings from manifolds with equiaffine connection onto Kähler manifolds

Irena Hinterleitner, Josef Mikeš (2013)

Archivum Mathematicum

Similarity:

In this paper we study fundamental equations of holomorphically projective mappings from manifolds with equiaffine connection onto (pseudo-) Kähler manifolds with respect to the smoothness class of connection and metrics. We show that holomorphically projective mappings preserve the smoothness class of connections and metrics.

Strongly not relatives Kähler manifolds

Michela Zedda (2017)

Complex Manifolds

Similarity:

In this paper we study Kähler manifolds that are strongly not relative to any projective Kähler manifold, i.e. those Kähler manifolds that do not share a Kähler submanifold with any projective Kähler manifold even when their metric is rescaled by the multiplication by a positive constant. We prove two results which highlight some relations between this property and the existence of a full Kähler immersion into the infinite dimensional complex projective space. As application we get that...

Toric extremal Kähler-Ricci solitons are Kähler-Einstein

Simone Calamai, David Petrecca (2017)

Complex Manifolds

Similarity:

In this short note, we prove that a Calabi extremal Kähler-Ricci soliton on a compact toric Kähler manifold is Einstein. This settles for the class of toric manifolds a general problem stated by the authors that they solved only under some curvature assumptions.

ω-pluripolar sets and subextension of ω-plurisubharmonic functions on compact Kähler manifolds

Le Mau Hai, Nguyen Van Khue, Pham Hoang Hiep (2007)

Annales Polonici Mathematici

Similarity:

We establish some results on ω-pluripolarity and complete ω-pluripolarity for sets in a compact Kähler manifold X with fundamental form ω. Moreover, we study subextension of ω-psh functions on a hyperconvex domain in X and prove a comparison principle for the class 𝓔(X,ω) recently introduced and investigated by Guedj-Zeriahi.