On holomorphically projective mappings from manifolds with equiaffine connection onto Kähler manifolds

Irena Hinterleitner; Josef Mikeš

Archivum Mathematicum (2013)

  • Volume: 049, Issue: 5, page 295-302
  • ISSN: 0044-8753

Abstract

top
In this paper we study fundamental equations of holomorphically projective mappings from manifolds with equiaffine connection onto (pseudo-) Kähler manifolds with respect to the smoothness class of connection and metrics. We show that holomorphically projective mappings preserve the smoothness class of connections and metrics.

How to cite

top

Hinterleitner, Irena, and Mikeš, Josef. "On holomorphically projective mappings from manifolds with equiaffine connection onto Kähler manifolds." Archivum Mathematicum 049.5 (2013): 295-302. <http://eudml.org/doc/260779>.

@article{Hinterleitner2013,
abstract = {In this paper we study fundamental equations of holomorphically projective mappings from manifolds with equiaffine connection onto (pseudo-) Kähler manifolds with respect to the smoothness class of connection and metrics. We show that holomorphically projective mappings preserve the smoothness class of connections and metrics.},
author = {Hinterleitner, Irena, Mikeš, Josef},
journal = {Archivum Mathematicum},
keywords = {holomorphically projective mapping; smoothness class; Kähler manifold; manifold with affine connection; fundamental equation; holomorphically projective mapping; smoothness class; Kähler manifold; manifold with affine connection; fundamental equation},
language = {eng},
number = {5},
pages = {295-302},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On holomorphically projective mappings from manifolds with equiaffine connection onto Kähler manifolds},
url = {http://eudml.org/doc/260779},
volume = {049},
year = {2013},
}

TY - JOUR
AU - Hinterleitner, Irena
AU - Mikeš, Josef
TI - On holomorphically projective mappings from manifolds with equiaffine connection onto Kähler manifolds
JO - Archivum Mathematicum
PY - 2013
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 049
IS - 5
SP - 295
EP - 302
AB - In this paper we study fundamental equations of holomorphically projective mappings from manifolds with equiaffine connection onto (pseudo-) Kähler manifolds with respect to the smoothness class of connection and metrics. We show that holomorphically projective mappings preserve the smoothness class of connections and metrics.
LA - eng
KW - holomorphically projective mapping; smoothness class; Kähler manifold; manifold with affine connection; fundamental equation; holomorphically projective mapping; smoothness class; Kähler manifold; manifold with affine connection; fundamental equation
UR - http://eudml.org/doc/260779
ER -

References

top
  1. al Lami, R. J. K., Škodová, M., Mikeš, J., On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces, Arch. Math. (Brno) 42 (5) (2006), 291–299. (2006) Zbl1164.53317MR2322415
  2. Alekseevsky, D. V., Marchiafava, S., Transformation of a quaternionic Kaehlerian manifold, C. R. Acad. Sci. Paris, Ser. I 320 (1995), 703–708. (1995) 
  3. Apostolov, V., Calderbank, D. M. J., Gauduchon, P., Tønnesen–Friedman, Ch. W., 10.1016/j.aim.2011.05.006, Adv. Math. 227 (6) (2011), 2385–2424. (2011) Zbl1232.32011MR2807093DOI10.1016/j.aim.2011.05.006
  4. Beklemishev, D.V., Differential geometry of spaces with almost complex structure, Geometria. Itogi Nauki i Tekhn., VINITI, Akad. Nauk SSSR, Moscow (1965), 165–212. (1965) 
  5. Domashev, V. V., Mikeš, J., 10.1007/BF01153160, Math. Notes 23 (1978), 160–163, transl. from Mat. Zametki 23(2) (1978), 297–304. (1978) DOI10.1007/BF01153160
  6. Eisenhart, L. P., Non–Riemannian Geometry, Princeton Univ. Press, 1926, AMS Colloq. Publ. 8 (2000). (1926) 
  7. Hinterleitner, I., 10.5817/AM2012-5-333, Arch. Math. (Brno) 48 (2012), 333–338. (2012) Zbl1289.53038MR3007616DOI10.5817/AM2012-5-333
  8. Hinterleitner, I., Mikeš, J., On F–planar mappings of spaces with affine connections, Note Mat. 27 (2007), 111–118. (2007) Zbl1150.53009MR2367758
  9. Hinterleitner, I., Mikeš, J., 10.1007/s10958-011-0316-8, J. Math. Sci. 174 (5) (2011), 537–554. (2011) Zbl1283.53015DOI10.1007/s10958-011-0316-8
  10. Hinterleitner, I., Mikeš, J., 10.1007/s10958-011-0479-3, J. Math. Sci. 177 (2011), 546–550, transl. from Fundam. Prikl. Mat. 16 (2010), 47–54. (2011) MR2786490DOI10.1007/s10958-011-0479-3
  11. Hinterleitner, I., Mikeš, J., Geodesic Mappings and Einstein Spaces, Geometric Methods in Physics, Birkhäuser Basel, 2013, arXiv: 1201.2827v1 [math.DG], 2012, pp. 331–336. (2013) Zbl1268.53049
  12. Hinterleitner, I., Mikeš, J., Geodesic mappings of (pseudo-) Riemannian manifolds preserve class of differentiability, Miskolc Math. Notes 14 (2) (2013), 575–582. (2013) Zbl1299.53041MR3144094
  13. Hrdina, J., Almost complex projective structures and their morphisms, Arch. Math. (Brno) 45 (2009), 255–264. (2009) Zbl1212.53022MR2591680
  14. Hrdina, J., Slovák, J., Morphisms of almost product projective geometries, Proc. 10th Int. Conf. on Diff. Geom. and its Appl., DGA 2007, Olomouc, Hackensack, NJ: World Sci., 2008, pp. 253–261. (2008) Zbl1168.53013MR2462798
  15. Jukl, M., Juklová, L., Mikeš, J., 10.1007/s10958-011-0321-y, J. Math. Sci. 174 (2011), 627–640. (2011) DOI10.1007/s10958-011-0321-y
  16. Mikeš, J., On holomorphically projective mappings of Kählerian spaces, Ukrain. Geom. Sb. 23 (1980), 90–98. (1980) Zbl0463.53013
  17. Mikeš, J., Special F—planar mappings of affinely connected spaces onto Riemannian spaces, Moscow Univ. Math. Bull. 49 (1994), 15–21, transl. from Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1994, 18–24. (1994) Zbl0896.53035
  18. Mikeš, J., 10.1007/BF02414875, J. Math. Sci. 89 (1998), 13334–1353. (1998) DOI10.1007/BF02414875
  19. Mikeš, J., Pokorná, O., On holomorphically projective mappings onto Kählerian spaces, Rend. Circ. Mat. Palermo (2) Suppl. 69 (2002), 181–186. (2002) Zbl1023.53015MR1972433
  20. Mikeš, J., Shiha, M., Vanžurová, A., Invariant objects by holomorphically projective mappings of Kähler spaces, 8th Int. Conf. APLIMAT 2009, 2009, pp. 439–444. (2009) 
  21. Mikeš, J., Sinyukov, N. S., On quasiplanar mappings of space of affine connection, Sov. Math. 27 (1983), 63–70, transl. from Izv. Vyssh. Uchebn. Zaved. Mat.. (1983) 
  22. Mikeš, J., Vanžurová, A., Hinterleitner, I., Geodesic Mappings and some Generalizations, Palacky University Press, Olomouc, 2009. (2009) Zbl1222.53002MR2682926
  23. Otsuki, T., Tashiro, Y., On curves in Kaehlerian spaces, Math. J. Okayama Univ. 4 (1954), 57–78. (1954) Zbl0057.14101
  24. Petrov, A . Z., Simulation of physical fields, Gravitatsiya i Teor. Otnositelnosti 4–5 (1968), 7–21. (1968) 
  25. Prvanović, M., Holomorphically projective transformations in a locally product space, Math. Balkanica 1 (1971), 195–213. (1971) 
  26. Sinyukov, N. S., Geodesic mappings of Riemannian spaces, Moscow: Nauka, 1979. (1979) Zbl0637.53020
  27. Škodová, M., Mikeš, J., Pokorná, O., On holomorphically projective mappings from equiaffine symmetric and recurrent spaces onto Kählerian spaces, Rend. Circ. Mat. Palermo (2) Suppl. 75 (2005), 309–316. (2005) Zbl1109.53019MR2152369
  28. Stanković, M. S., Zlatanović, M. L., Velimirović, L. S., 10.1007/s10587-010-0059-6, Czechoslovak Math. J. 60 (2010), 635–653. (2010) Zbl1224.53031MR2672406DOI10.1007/s10587-010-0059-6
  29. Yano, K., Differential geometry on complex and almost complex spaces, vol. XII, Pergamon Press, 1965. (1965) Zbl0127.12405

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.