On holomorphically projective mappings from manifolds with equiaffine connection onto Kähler manifolds
Irena Hinterleitner; Josef Mikeš
Archivum Mathematicum (2013)
- Volume: 049, Issue: 5, page 295-302
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topHinterleitner, Irena, and Mikeš, Josef. "On holomorphically projective mappings from manifolds with equiaffine connection onto Kähler manifolds." Archivum Mathematicum 049.5 (2013): 295-302. <http://eudml.org/doc/260779>.
@article{Hinterleitner2013,
abstract = {In this paper we study fundamental equations of holomorphically projective mappings from manifolds with equiaffine connection onto (pseudo-) Kähler manifolds with respect to the smoothness class of connection and metrics. We show that holomorphically projective mappings preserve the smoothness class of connections and metrics.},
author = {Hinterleitner, Irena, Mikeš, Josef},
journal = {Archivum Mathematicum},
keywords = {holomorphically projective mapping; smoothness class; Kähler manifold; manifold with affine connection; fundamental equation; holomorphically projective mapping; smoothness class; Kähler manifold; manifold with affine connection; fundamental equation},
language = {eng},
number = {5},
pages = {295-302},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On holomorphically projective mappings from manifolds with equiaffine connection onto Kähler manifolds},
url = {http://eudml.org/doc/260779},
volume = {049},
year = {2013},
}
TY - JOUR
AU - Hinterleitner, Irena
AU - Mikeš, Josef
TI - On holomorphically projective mappings from manifolds with equiaffine connection onto Kähler manifolds
JO - Archivum Mathematicum
PY - 2013
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 049
IS - 5
SP - 295
EP - 302
AB - In this paper we study fundamental equations of holomorphically projective mappings from manifolds with equiaffine connection onto (pseudo-) Kähler manifolds with respect to the smoothness class of connection and metrics. We show that holomorphically projective mappings preserve the smoothness class of connections and metrics.
LA - eng
KW - holomorphically projective mapping; smoothness class; Kähler manifold; manifold with affine connection; fundamental equation; holomorphically projective mapping; smoothness class; Kähler manifold; manifold with affine connection; fundamental equation
UR - http://eudml.org/doc/260779
ER -
References
top- al Lami, R. J. K., Škodová, M., Mikeš, J., On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces, Arch. Math. (Brno) 42 (5) (2006), 291–299. (2006) Zbl1164.53317MR2322415
- Alekseevsky, D. V., Marchiafava, S., Transformation of a quaternionic Kaehlerian manifold, C. R. Acad. Sci. Paris, Ser. I 320 (1995), 703–708. (1995)
- Apostolov, V., Calderbank, D. M. J., Gauduchon, P., Tønnesen–Friedman, Ch. W., 10.1016/j.aim.2011.05.006, Adv. Math. 227 (6) (2011), 2385–2424. (2011) Zbl1232.32011MR2807093DOI10.1016/j.aim.2011.05.006
- Beklemishev, D.V., Differential geometry of spaces with almost complex structure, Geometria. Itogi Nauki i Tekhn., VINITI, Akad. Nauk SSSR, Moscow (1965), 165–212. (1965)
- Domashev, V. V., Mikeš, J., 10.1007/BF01153160, Math. Notes 23 (1978), 160–163, transl. from Mat. Zametki 23(2) (1978), 297–304. (1978) DOI10.1007/BF01153160
- Eisenhart, L. P., Non–Riemannian Geometry, Princeton Univ. Press, 1926, AMS Colloq. Publ. 8 (2000). (1926)
- Hinterleitner, I., 10.5817/AM2012-5-333, Arch. Math. (Brno) 48 (2012), 333–338. (2012) Zbl1289.53038MR3007616DOI10.5817/AM2012-5-333
- Hinterleitner, I., Mikeš, J., On F–planar mappings of spaces with affine connections, Note Mat. 27 (2007), 111–118. (2007) Zbl1150.53009MR2367758
- Hinterleitner, I., Mikeš, J., 10.1007/s10958-011-0316-8, J. Math. Sci. 174 (5) (2011), 537–554. (2011) Zbl1283.53015DOI10.1007/s10958-011-0316-8
- Hinterleitner, I., Mikeš, J., 10.1007/s10958-011-0479-3, J. Math. Sci. 177 (2011), 546–550, transl. from Fundam. Prikl. Mat. 16 (2010), 47–54. (2011) MR2786490DOI10.1007/s10958-011-0479-3
- Hinterleitner, I., Mikeš, J., Geodesic Mappings and Einstein Spaces, Geometric Methods in Physics, Birkhäuser Basel, 2013, arXiv: 1201.2827v1 [math.DG], 2012, pp. 331–336. (2013) Zbl1268.53049
- Hinterleitner, I., Mikeš, J., Geodesic mappings of (pseudo-) Riemannian manifolds preserve class of differentiability, Miskolc Math. Notes 14 (2) (2013), 575–582. (2013) Zbl1299.53041MR3144094
- Hrdina, J., Almost complex projective structures and their morphisms, Arch. Math. (Brno) 45 (2009), 255–264. (2009) Zbl1212.53022MR2591680
- Hrdina, J., Slovák, J., Morphisms of almost product projective geometries, Proc. 10th Int. Conf. on Diff. Geom. and its Appl., DGA 2007, Olomouc, Hackensack, NJ: World Sci., 2008, pp. 253–261. (2008) Zbl1168.53013MR2462798
- Jukl, M., Juklová, L., Mikeš, J., 10.1007/s10958-011-0321-y, J. Math. Sci. 174 (2011), 627–640. (2011) DOI10.1007/s10958-011-0321-y
- Mikeš, J., On holomorphically projective mappings of Kählerian spaces, Ukrain. Geom. Sb. 23 (1980), 90–98. (1980) Zbl0463.53013
- Mikeš, J., Special F—planar mappings of affinely connected spaces onto Riemannian spaces, Moscow Univ. Math. Bull. 49 (1994), 15–21, transl. from Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1994, 18–24. (1994) Zbl0896.53035
- Mikeš, J., 10.1007/BF02414875, J. Math. Sci. 89 (1998), 13334–1353. (1998) DOI10.1007/BF02414875
- Mikeš, J., Pokorná, O., On holomorphically projective mappings onto Kählerian spaces, Rend. Circ. Mat. Palermo (2) Suppl. 69 (2002), 181–186. (2002) Zbl1023.53015MR1972433
- Mikeš, J., Shiha, M., Vanžurová, A., Invariant objects by holomorphically projective mappings of Kähler spaces, 8th Int. Conf. APLIMAT 2009, 2009, pp. 439–444. (2009)
- Mikeš, J., Sinyukov, N. S., On quasiplanar mappings of space of affine connection, Sov. Math. 27 (1983), 63–70, transl. from Izv. Vyssh. Uchebn. Zaved. Mat.. (1983)
- Mikeš, J., Vanžurová, A., Hinterleitner, I., Geodesic Mappings and some Generalizations, Palacky University Press, Olomouc, 2009. (2009) Zbl1222.53002MR2682926
- Otsuki, T., Tashiro, Y., On curves in Kaehlerian spaces, Math. J. Okayama Univ. 4 (1954), 57–78. (1954) Zbl0057.14101
- Petrov, A . Z., Simulation of physical fields, Gravitatsiya i Teor. Otnositelnosti 4–5 (1968), 7–21. (1968)
- Prvanović, M., Holomorphically projective transformations in a locally product space, Math. Balkanica 1 (1971), 195–213. (1971)
- Sinyukov, N. S., Geodesic mappings of Riemannian spaces, Moscow: Nauka, 1979. (1979) Zbl0637.53020
- Škodová, M., Mikeš, J., Pokorná, O., On holomorphically projective mappings from equiaffine symmetric and recurrent spaces onto Kählerian spaces, Rend. Circ. Mat. Palermo (2) Suppl. 75 (2005), 309–316. (2005) Zbl1109.53019MR2152369
- Stanković, M. S., Zlatanović, M. L., Velimirović, L. S., 10.1007/s10587-010-0059-6, Czechoslovak Math. J. 60 (2010), 635–653. (2010) Zbl1224.53031MR2672406DOI10.1007/s10587-010-0059-6
- Yano, K., Differential geometry on complex and almost complex spaces, vol. XII, Pergamon Press, 1965. (1965) Zbl0127.12405
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.