The Hermite polynomials and the Bessel functions from a general point of view.
Dattoli, G., Srivastava, H. M., Sacchetti, D. (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Dattoli, G., Srivastava, H. M., Sacchetti, D. (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Thakurta, Bidyut Kumar Guha (1987)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Hussain, M.A., Singh, S.N. (1979)
Portugaliae mathematica
Similarity:
J. P. Singhal, C. M. Joshi (1982)
Revista Matemática Hispanoamericana
Similarity:
Blasiak, P., Dattoli, G., Horzela, A., Penson, K.A., Zhukovsky, K. (2008)
Journal of Integer Sequences [electronic only]
Similarity:
Dattoli, G., Migliorati, M. (2006)
International Journal of Mathematics and Mathematical Sciences
Similarity:
O.P. Vijay (1975)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
Thakare, N.K., Madhekar, M.C. (1988)
International Journal of Mathematics and Mathematical Sciences
Similarity:
S. K. Chatterjea (1964)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Dutta, M., Manocha, Kanchan Prabha (1983)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Diego Dominici (2007)
Open Mathematics
Similarity:
We analyze the Charlier polynomials C n(χ) and their zeros asymptotically as n → ∞. We obtain asymptotic approximations, using the limit relation between the Krawtchouk and Charlier polynomials, involving some special functions. We give numerical examples showing the accuracy of our formulas.